

MG Chemicals UK Limited

Version No: A-2.00

Safety data sheet according to REACH Regulation (EC) No 1907/2006, as amended by UK REACH Regulations SI 2019/758

Issue Date: 09/06/2023 Print Date: 12/06/2023 L.REACH.GB.EN

SECTION 1 Identification of the substance / mixture and of the company / undertaking

1.1. Product Identifier

Product name	402E Electronic Super Duster	
Synonyms	402E	
Proper shipping name	LITHIUM ION BATTERIES CONTAINED IN EQUIPMENT or LITHIUM ION BATTERIES PACKED WITH EQUIPMENT (including lithium ion polymer batteries)	
Other means of identification	402E20.32023	

1.2. Relevant identified uses of the substance or mixture and uses advised against

Relevant identified uses	Duster for electronics maintenance
Uses advised against	No specific uses advised against are identified.

1.3. Details of the manufacturer or supplier of the safety data sheet

Registered company name	MG Chemicals UK Limited	MG Chemicals (Head office)	MG Chemicals (Head office)	
Address	Heame House, 23 Bilston Street, Sedgely Dudley DY3 1JA United Kingdom	1210 Corporate Drive Ontario L7L 5R6 Canada	1210 Corporate Drive Ontario L7L 5R6 Canada	
Telephone	+(44) 1663 362888	+(1) 800-340-0772	+(1) 800-340-0772	
Fax	Not Available	+(1) 800-340-0773	+(1) 800-340-0773	
Website	Not Available	www.mgchemicals.com	www.mgchemicals.com	
Email	sales@mgchemicals.com	Info@mgchemicals.com	Info@mgchemicals.com	

1.4. Emergency telephone number

Association / Organisation	Verisk 3E (Access code: 335388)	
Emergency telephone numbers	+(44) 20 35147487	
Other emergency telephone numbers	+(0) 800 680 0425	

SECTION 2 Hazards identification

2.1. Classification of the substance or mixture

Classified according to GB-CLP Regulation, UK SI 2019/720 and UK SI 2020/1567	Not Applicable
[1] 2.2. Label elements	

Hazard pictogram(s) Not Applicable

> Signal word Not Applicable

Hazard statement(s)

Not Applicable

Supplementary Phrases

EUH210 Safety data sheet available on request. Precautionary statement(s) Prevention

Not Applicable Precautionary statement(s) Response Not Applicable

Precautionary statement(s) Storage

Not Applicable

Precautionary statement(s) Disposal

Not Applicable **2.3. Other hazards**

Inhalation may produce severe health damage*.

Cumulative effects may result following exposure*.

May possibly be harmful to breastfed babies.*

aluminium	Listed in the Europe Regulation (EC) No 1907/2006 - Annex XVII (Restrictions may apply)
nickel	Listed in the Europe Regulation (EC) No 1907/2006 - Annex XVII (Restrictions may apply)

SECTION 3 Composition / information on ingredients

3.1.Substances

See 'Composition on ingredients' in Section 3.2

3.2.Mixtures

1. CAS No 2.EC No 3.Index No 4.REACH No	%[weight]	Name	Classified according to GB-CLP Regulation, UK SI 2019/720 and UK SI 2020/1567	SCL / M-Factor	Nanoform Particle Characteristics
1. 12190-79-3 2.235-362-0 3.Not Available 4.Not Available	15-40	lithium cobaltate	Acute Toxicity (Oral) Category 4, Sensitisation (Skin) Category 1, Sensitisation (Respiratory) Category 1, Carcinogenicity Category 1B, Hazardous to the Aquatic Environment Long-Term Hazard Category 4; H302, H317, H334, H350, H413 ^[1]	Not Available	Not Available
1. 7782-42-5 2.231-955-3 3.Not Available 4.Not Available	10-30	graphite, natural	Specific Target Organ Toxicity - Repeated Exposure Category 2; H373 ^[1]	Not Available	Not Available
1. 21324-40-3 2.244-334-7 3.Not Available 4.Not Available	10-30	lithium fluorophosphate	Acute Toxicity (Oral) Category 4, Acute Toxicity (Dermal) Category 3, Skin Corrosion/Irritation Category 1B, Serious Eye Damage/Eye Irritation Category 1; H302, H311, H314, H318 ^[1]	Not Available	Not Available
1. 7440-50-8 2.231-159-6 3.029-024-00-X 4.Not Available	7-13	copper	Hazardous to the Aquatic Environment Long-Term Hazard Category 2; H411 ^[2]	Not Available	Not Available
1. 7429-90-5 2.231-072-3 3.013-001-00-6 013-002-00-1 4.Not Available	5-10	aluminium	Pyrophoric Solids Category 1, Substances and Mixtures which in Contact with Water Emit Flammable Gases Category 2; H250, H261 ^[2]	Not Available	Not Available
1. 7440-02-0 2.231-111-4 445-070-7 3.028-002-00-7 028-002-01-4 4.Not Available	1-5	nickel	Sensitisation (Skin) Category 1, Carcinogenicity Category 2, Specific Target Organ Toxicity - Repeated Exposure Category 1; H317, H351, H372 ^[2]	Not Available	Not Available
Legend:	Legend: 1. Classified by Chemwatch; 2. Classification drawn from GB-CLP Regulation, UK SI 2019/720 and UK SI 2020/1567; 3. Classification drawn from C&L * EU IOELVs available; [e] Substance identified as having endocrine disrupting properties			Classification drawn	

SECTION 4 First aid measures

4.1. Description of first aid measures

Eye Contact	 If this product comes in contact with the eyes: Immediately hold eyelids apart and flush the eye continuously with running water. Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. Continue flushing until advised to stop by the Poisons Information Centre or a doctor, or for at least 15 minutes. Transport to hospital or doctor without delay. Removal of contact lenses after an eye injury should only be undertaken by skilled personnel. DO NOT attempt to remove particles attached to or embedded in eye . Lay victim down, on stretcher if available and pad BOTH eyes, make sure dressing does not press on the injured eye by placing thick pads under dressing, above and below the eye. Seek urgent medical assistance, or transport to hospital.
Skin Contact	If skin or hair contact occurs: Flush skin and hair with running water (and soap if available). Seek medical attention in event of irritation.
Inhalation	 If fumes or combustion products are inhaled remove from contaminated area. Lay patient down. Keep warm and rested. Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary. Transport to hospital, or doctor, without delay.

Ingestion	 IF SWALLOWED, REFER FOR MEDICAL ATTENTION, WHERE POSSIBLE, WITHOUT DELAY. For advice, contact a Poisons Information Centre or a doctor. Urgent hospital treatment is likely to be needed. In the mean time, qualified first-aid personnel should treat the patient following observation and employing supportive measures as indicated by the patient's condition. If the services of a medical officer or medical doctor are readily available, the patient should be placed in his/her care and a copy of the SDS should be provided. Further action will be the responsibility of the medical specialist. If medical attention is not available on the worksite or surroundings send the patient to a hospital together with a copy of the SDS.
	 Where medical attention is not immediately available or where the patient is more than 15 minutes from a hospital or unless instructed otherwise: INDUCE vomiting with fingers down the back of the throat, ONLY IF CONSCIOUS. Lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration. NOTE: Wear a protective glove when inducing vomiting by mechanical means.

4.2 Most important symptoms and effects, both acute and delayed

See Section 11

4.3. Indication of any immediate medical attention and special treatment needed

Treat symptomatically.

- for copper intoxication:
 - Unless extensive vomiting has occurred empty the stomach by lavage with water, milk, sodium bicarbonate solution or a 0.1% solution of potassium ferrocyanide (the resulting copper ferrocyanide is insoluble).
 - Administer egg white and other demulcents.
- Maintain electrolyte and fluid balances.
- Morphine or meperidine (Demerol) may be necessary for control of pain.
- If symptoms persist or intensify (especially circulatory collapse or cerebral disturbances, try BAL intramuscularly or penicillamine in accordance with the supplier's recommendations.
- Treat shock vigorously with blood transfusions and perhaps vasopressor amines.
- F If intravascular haemolysis becomes evident protect the kidneys by maintaining a diuresis with mannitol and perhaps by alkalinising the urine with sodium bicarbonate.
- t is unlikely that methylene blue would be effective against the occassional methaemoglobinemia and it might exacerbate the subsequent haemolytic episode.
- Institute measures for impending renal and hepatic failure.
- [GOSSELIN, SMITH & HODGE: Commercial Toxicology of Commercial Products]
- A role for activated charcoals for emesis is, as yet, unproven.
- In severe poisoning CaNa2EDTA has been proposed.
- [ELLENHORN & BARCELOUX: Medical Toxicology]
- Clinical effects of lithium intoxication appear to relate to duration of exposure as well as to level.
 - Lithium produces a generalised slowing of the electroencephalogram; the anion gap may increase in severe cases.
 - Emesis (or lavage if the patient is obtunded or convulsing) is indicated for ingestions exceeding 40 mg (Li)/Kg.
- Overdose may delay absorption; decontamination measures may be more effective several hours after cathartics.
- Charcoal is not useful. No clinical data are available to guide the administration of catharsis.
- + Haemodialysis significantly increases lithium clearance; indications for haemodialysis include patients with serum levels above 4 meq/L.
- There are no antidotes.

[Ellenhorn and Barceloux: Medical Toxicology]

- For acute or short term repeated exposures to strong acids:
- Airway problems may arise from laryngeal edema and inhalation exposure. Treat with 100% oxygen initially.
- Respiratory distress may require cricothyroidotomy if endotracheal intubation is contraindicated by excessive swelling
- Intravenous lines should be established immediately in all cases where there is evidence of circulatory compromise.
- Strong acids produce a coagulation necrosis characterised by formation of a coagulum (eschar) as a result of the dessicating action of the acid on proteins in specific tissues. INGESTION:
- Immediate dilution (milk or water) within 30 minutes post ingestion is recommended.
- **DO NOT** attempt to neutralise the acid since exothermic reaction may extend the corrosive injury.
- ▶ Be careful to avoid further vomit since re-exposure of the mucosa to the acid is harmful. Limit fluids to one or two glasses in an adult.
- Charcoal has no place in acid management.
- Some authors suggest the use of lavage within 1 hour of ingestion.

SKIN:

- Skin lesions require copious saline irrigation. Treat chemical burns as thermal burns with non-adherent gauze and wrapping.
- Deep second-degree burns may benefit from topical silver sulfadiazine.

EYE:

- Eye injuries require retraction of the eyelids to ensure thorough irrigation of the conjuctival cul-de-sacs. Irrigation should last at least 20-30 minutes. DO NOT use neutralising agents or any other additives. Several litres of saline are required.
- Cycloplegic drops, (1% cyclopentolate for short-term use or 5% homatropine for longer term use) antibiotic drops, vasoconstrictive agents or artificial tears may be indicated dependent on the severity of the injury.
- + Steroid eye drops should only be administered with the approval of a consulting ophthalmologist).

[Ellenhorn and Barceloux: Medical Toxicology]

- Chronic exposures to cobalt and its compounds results in the so-called "hard metal pneumoconiosis" amongst industrial workers. The lesions consist of nodular conglomerate shadows in the lungs, together with peribronchial infiltration. The disease may be reversible. The acute form of the disease resembles a hypersensitivity reaction with malaise, cough and wheezing; the chronic form progresses to cor pulmonale.
- Chronic therapeutic administration may cause goiter and reduced thyroid activity.
- An allergic dermatitis, usually confined to elbow flexures, the ankles and sides of the neck, has been described.
- Cobalt cardiomyopathy may be diagnosed early by changes in the final part of the ventricular ECG (repolarisation). In the presence of such disturbances, the changes in carbohydrate metabolism (revealed by the glucose test) are of important diagnostic value.
- Treatment generally consists of a combination of Retabolil (1 injection per week over 4 weeks) and beta-blockers (average dose 60-80 mg Obsidan/24 hr). Potassium salts and diuretics have also proved useful.

BIOLOGICAL	EXPOSURE	INDEX (BEI

	Determinant	Sampling time	Index	Comments	
	Cobalt in urine	End of shift at end of workweek	15 ug/L	В	
	Cobalt in blood	End of shift at end of workweek	1 ug/L	B, SQ	

B: Background levels occur in specimens collected from subjects NOT exposed

SQ: Semi-quantitative determinant - Interpretation may be ambiguous; should be used as a screening test or confirmatory test.

Continued...

Comments B, NS

B, NS

For acute or short term repeated exposures to fluorides:

- Fluoride absorption from gastro-intestinal tract may be retarded by calcium salts, milk or antacids.
- Fluoride particulates or fume may be absorbed through the respiratory tract with 20-30% deposited at alveolar level.
- Peak serum levels are reached 30 mins. post-exposure; 50% appears in the urine within 24 hours.
- For acute poisoning (endotracheal intubation if inadequate tidal volume), monitor breathing and evaluate/monitor blood pressure and pulse frequently since shock may supervene with little warning. Monitor ECG immediately; watch for arrhythmias and evidence of Q-T prolongation or T-wave changes. Maintain monitor. Treat shock vigorously with isotonic saline (in 5% glucose) to restore blood volume and enhance renal excretion.

Sampling Time

Prior to shift End of shift

Where evidence of hypocalcaemic or normocalcaemic tetany exists, calcium gluconate (10 ml of a 10% solution) is injected to avoid tachycardia.

BIOLOGICAL EXPOSURE INDEX - BEI

These represent the determinants observed in specimens collected from a healthy worker exposed at the Exposure Standard (ES or TLV):

Determinant	Index
Fluorides in urine	3 mg/gm creatinine
	10mg/gm creatinine

B: Background levels occur in specimens collected from subjects NOT exposed

NS: Non-specific determinant; also observed after exposure to other exposures.

SECTION 5 Firefighting measures

5.1. Extinguishing media

Metal dust fires need to be smothered with sand, inert dry powders.

DO NOT USE WATER, CO2 or FOAM

- Use DRY sand, graphite powder, dry sodium chloride based extinguishers, G-1 or Met L-X to smother fire.
- Confining or smothering material is preferable to applying water as chemical reaction may produce flammable and explosive hydrogen gas.
- Chemical reaction with CO2 may produce flammable and explosive methane.
- ▶ If impossible to extinguish, withdraw, protect surroundings and allow fire to burn itself out.
- Sand, dry powder extinguishers or other inerts should be used to smother dust fires.
- **DO NOT** use halogenated fire extinguishing agents.

5.2. Special hazards arising from the substrate or mixture

Fire Incompatibility	 Reacts with acids producing flammable / explosive hydrogen (H2) gas Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result Keep dry NOTE: May develop pressure in containers; open carefully. Vent periodically.
----------------------	---

5.3. Advice for firefighters

Fire Fighting	 Alert Fire Brigade and tell them location and nature of hazard. Wear breathing apparatus plus protective gloves in the event of a fire. Prevent, by any means available, spillage from entering drains or water courses. Use fire fighting procedures suitable for surrounding area. DO NOT approach containers suspected to be hot. Cool fire exposed containers with water spray from a protected location. If safe to do so, remove containers from path of fire. Equipment should be thoroughly decontaminated after use. When silica dust is dispersed in air, firefighters should wear inhalation protection as hazardous substances from the fire may be adsorbed on the silica particles. When heated to extreme temperatures, (>1700 deg.C) amorphous silica can fuse.
Fire/Explosion Hazard	 Do NOT disturb burning dust. Explosion may result if dust is stirred into a cloud, by providing oxygen to a large surface of hot metal. Do NOT use water or foam as generation of explosive hydrogen may result. With the exception of the metals that burn in contact with air or water (for example, sodium), masses of combustible metals do not represent unusual fire risks because they have the ability to conduct heat away from hot spots so efficiently that the heat of combustion cannot be maintained - this means that it will require a lot of heat to ignite a mass of combustible metal. Generally, metal fire risks exist when sawdust, machine shavings and other metal fines' are present. Metal powders, while generally regarded as non-combustible: May burn when metal is finely divided and energy input is high. May react explosively with water. May period by firiton, heat, sparks or flame. May REIGNITE after fire is extinguished. Will burn with intense heat. Note: Metal dust fires are slow moving but intense and difficult to extinguish. Containers may explode on heating. Dusts or furmes may topiode by mixtures with air. Gases generated in fire may be poisonous, corrosive or irritating. Hot or burning metals may react violently upon contact with other materials, such as oxidising agents and extinguishing agents used on fires involving ordinary combustibles or flammable liquids. Temperatures produced by burning metals can be higher than temperatures generated by burning flammable liquids. Some metals can continue to burn in carbon dioxide, nitrogen, water, or steam atmospheres in which ordinary combustibles or flammable liquids. When silica dust is dispersed in air, firefighters should wear inhalation protection as hazardous substances from the fire may be adsorbed on the silica particles. When heated to extreme temperatures, (>1700 deg.C) amorphous silica

C	Combustion products include:		
c	arbon monoxide (CO)		
c	arbon dioxide (CO2)		
p	hosphorus oxides (POx)		
h	ydrogen fluoride		
s	ilicon dioxide (SiO2)		
n	netal oxides		
	ther pyrolysis products typical of b		
			ear protection against inhalation of dust particles, which can also contain
	azardous substances from the fire	absorbed on the alumina partic	les.
l l l l l l l l l l l l l l l l l l l	lay emit poisonous fumes.		· · · ·
	 Particle size, coating and dispersively 		
		•	olten aluminium can be ignited and burn.
	Atomised aluminium dusts are		th water. Aluminium is rapidly oxidised by water at 180 C arks may ignite the dust cloud even in atmospheres containing low oxygen
	(7%).		
	, ,		me where temperatures exceed 640 deg C.
	o produce the disturbance.	nay not be obviously visible unle	ess the material is disturbed and sparks appear. A straw broom may be useful
	Explosion and Ignition Behaviour of	f Carbon Black with Air	
	spiosion and ignition behaviour of		
	Lower Limit for Explosion:	50 g/m3 (carbon black in air)	
	Maximum Explosion Pressure:	10 bar	
	Maximum Rate of Pressure Rise:	30-100 bar/sec	
	Minimum Ignition Temperature:	315 deg. C.	
	Ignition Energy:	>1 kJ	
	Glow Temperature:	500 deg. C. (approx.)	
T h T li F T T	aving an intensity of 5000 W.S. ests 1 and 2 results are confirmed	by information in the Handbook nwald furnace was used. See U mical igniters of variable intensi ry oven. Active glowing appeare	d after 3 minutes exposure.

SECTION 6 Accidental release measures

6.1. Personal precautions, protective equipment and emergency procedures See section 8

6.2. Environmental precautions

See section 12

6.3. Methods and material for containment and cleaning up

Minor Spills	 Environmental hazard - contain spillage. Clean up waste regularly and abnormal spills immediately. Avoid breathing dust and contact with skin and eyes. Wear protective clothing, gloves, safety glasses and dust respirator. Use dry clean up procedures and avoid generating dust. Vacuum up or sweep up. NOTE: Vacuum cleaner must be fitted with an exhaust micro filter (H-Class HEPA type) (consider explosion-proof machines designed to be grounded during storage and use). H-Class HEPA filtered industrial vacuum cleaners should NOT be used on wet materials or surfaces. Dampen with water to prevent dusting before sweeping. Place in suitable containers for disposal.
Major Spills	 Environmental hazard - contain spillage. Do not use compressed air to remove metal dusts from floors, beams or equipment Vacuum cleaners, of flame-proof design, should be used to minimise dust accumulation. Use non-sparking handling equipment, tools and natural bristle brushes. Provide grounding and bonding where necessary to prevent accumulation of static charges during metal dust handling and transfer operations Cover and reseal partially empty containers. Do not allow chips, fines or dusts to contact water, particularly in enclosed areas. If molten: Contain the flow using dry sand or salt flux as a dam. All tooling (e.g., shovels or hand tools) and containers which come in contact with molten metal must be preheated or specially coated, rust free and approved for such use. Allow the spill to cool before remelting scrap.

6.4. Reference to other sections

Personal Protective Equipment advice is contained in Section 8 of the SDS.

SECTION 7 Handling and storage

7.1. Precautions for safe handling

Safe handling NOTE:

	 Wet, activated carbon removes crogen from the air thus producing a severe hazard to workers inside carbon vessels and in enclosed or continued spaces when excitated carbons might accumulate. Now corgen levels should be undertaken; control conditions should be established to use news, sampling and test productions (stress) when there is sufficient molten metal to entrap or seal off water. Water and other forms of contamination on contained in scrap or remet ingot are known to have caused explosions on innegring operations. While the products may have mininal surface coupleness and internal voids, there remains the possibility of molisture contamination or entraports and have and voids. There is sufficient molten metal is entrap or seal off water. Water and other forms of contamination needs (a concrete) should be specially coated. Orgon of motten metal (a concrete) should be specially coated. Orgon of motten metal (a concrete) should be specially coated. Drogs of molten metal (a concrete) should be specially coated. During mething operations. the following minimum guidelines should be observed: Inspecial materialis prior to furnace charging and completely remove surface contamination such as water, ice, snow, deposits of grease and oil or othe surface contamination resulting from weather exposure, shipment, or storage. Store materialis in dry, heated areas with any cracks contamination such as water, ice, snow, deposits of grease and oil or othe hold at that temperature for the cycles should be ordered. Ave all passes with any cracks contamination such as water, ice, snow, deposits of grease and oil or other hold of that temperature for the cycles hould be interesting. Ave all passes and and contact, finding in halation. Prevent concentration in holding in halating in the storage of contamination such as water, ice, snow, deposits of grease and oil or other and hold at that temperatur
Fire and explosion protection	See section 5
Other information	Carbon and charcoal may be stabilised for storage and transport, without moistening, by treatment with hot air at 50 deg. C Use of oxygen- impermeable bags to limit oxygen and moisture uptake has been proposed. Surface contamination with oxygenated volatiles may generate a heat of reaction (spontaneous heating). Should stored product reach 110 deg. C., stacked bags should be pulled apart with each bag separated by an air space to permit cooling away from other combustible materials. Store in original containers. Keep containers securely sealed. Store in a cool, dry, well-ventilated area. Store away from incompatible materials and foodstuff containers. Protect containers against physical damage and check regularly for leaks. Observe manufacturer's storage and handling recommendations contained within this SDS.

7.2. Conditions for safe storage, including any incompatibilities

7.2. Conditions for safe storage	e, including any incompatibilities
Suitable container	 For low viscosity materials Drums and jerricans must be of the non-removable head type. Where a can is to be used as an inner package, the can must have a screwed enclosure. For materials with a viscosity of at least 2680 cSt. (23 deg. C) and solids (between 15 C deg. and 40 deg C.): Removable head packaging; Cans with friction closures and low pressure tubes and cartridges may be used. Where combination packages are used, and the inner packages are of glass, there must be sufficient inert cushioning material in contact with inner and outer packages *. In addition, where inner packagings are glass and contain liquids of packing group I and II there must be sufficient inert absorbent to absorb any spillage *.

	- * unless the outer packaging is a close fitting moulded plastic box and the substances are not incompatible with the plastic.
Storage incompatibility	 *unices the outer packaging is a close. Here, measured plack how and the substances are not incompable with the placet. Comparison derivation canding: Comparison derivation: Comp

	 producing a self-heating reaction that may result in the ignition of charcoal and in the production of hydrogen through thermal decomposition of the borohydride. Keep dry NOTE: May develop pressure in containers; open carefully. Vent periodically.
Hazard categories in accordance with Regulation (EC) No 1272/2008	Not Available
Qualifying quantity (tonnes) of dangerous substances as referred to in Article 3(10) for the application of	Not Available

7.3. Specific end use(s)

See section 1.2

SECTION 8 Exposure controls / personal protection

8.1. Control parameters

Ingredient	DNELs Exposure Pattern Worker	PNECs Compartment	
lithium cobaltate	Inhalation 66.4 µg/m³ (Local, Chronic) Oral 49.49 µg/kg bw/day (Systemic, Chronic) * Inhalation 13.3 µg/m³ (Local, Chronic) *	0.62 µg/L (Water (Fresh)) 2.36 µg/L (Water - Intermittent release) 53.8 mg/kg sediment dw (Sediment (Fresh Water)) 69.8 mg/kg sediment dw (Sediment (Marine)) 10.9 mg/kg soil dw (Soil) 0.37 mg/L (STP)	
graphite, natural	Inhalation 1.2 mg/m ³ (Systemic, Chronic) Inhalation 1.2 mg/m ³ (Local, Chronic) Oral 813 mg/kg bw/day (Systemic, Chronic) * Inhalation 0.3 mg/m ³ (Local, Chronic) *	Not Available	
lithium fluorophosphate	Dermal 133 µg/kg bw/day (Systemic, Chronic) Inhalation 0.931 mg/m³ (Systemic, Chronic)	 0.31 mg/L (Water (Fresh)) 0.031 mg/L (Water - Intermittent release) 0.68 mg/L (Water (Marine)) 7.73 mg/kg sediment dw (Sediment (Fresh Water)) 1.55 mg/kg sediment dw (Sediment (Marine)) 13.5 mg/kg soil dw (Soil) 48 mg/L (STP) 	
copper	Dermal 137 mg/kg bw/day (Systemic, Chronic) Dermal 273 mg/kg bw/day (Systemic, Acute) Dermal 137 mg/kg bw/day (Systemic, Chronic) * Oral 0.041 mg/kg bw/day (Systemic, Chronic) * Inhalation 1 mg/m ³ (Local, Chronic) * Dermal 273 mg/kg bw/day (Systemic, Acute) * Inhalation 1 mg/m ³ (Local, Acute) *	 3.1 µg/L (Water (Fresh)) 1.2 µg/L (Water - Intermittent release) 0 µg/L (Water (Marine)) 87 mg/kg sediment dw (Sediment (Fresh Water)) 12 mg/kg sediment dw (Sediment (Marine)) 0.7 mg/kg soil dw (Soil) 0.33 mg/L (STP) 0.12 mg/kg food (Oral) 	
aluminium	Inhalation 3.72 mg/m ³ (Systemic, Chronic) Inhalation 3.72 mg/m ³ (Local, Chronic) Oral 3.95 mg/kg bw/day (Systemic, Chronic) *	74.9 μg/L (Water (Fresh)) 20 mg/L (STP)	
Inhalation 0.05 mg/m³ (Systemic, Chronic) Dermal 0.035 mg/cm² (Local, Chronic) Inhalation 0.05 mg/m³ (Local, Chronic) Inhalation 11.9 mg/m³ (Local, Acute) Inhalation 60 ng/m³ (Systemic, Chronic) * Oral 0.011 mg/kg bw/day (Systemic, Chronic) * Inhalation 60 ng/m³ (Local, Chronic) * Inhalation 60 ng/m³ (Local, Chronic) * Inhalation 60 ng/m³ (Local, Chronic) * Oral 0.37 mg/kg bw/day (Systemic, Acute) * Inhalation 0.8 mg/m³ (Local, Acute) *		 7.1 µg/L (Water (Fresh)) 8.6 µg/L (Water - Intermittent release) 0 µg/L (Water (Marine)) 109 mg/kg sediment dw (Sediment (Fresh Water)) 109 mg/kg sediment dw (Sediment (Marine)) 29.9 mg/kg soil dw (Soil) 0.33 mg/L (STP) 0.12 mg/kg food (Oral) 	

* Values for General Population

Occupational Exposure Limits (OEL)

INGREDIENT DATA

Source	Ingredient	Material name	TWA	STEL	Peak	Notes
UK Workplace Exposure Limits (WELs).	lithium cobaltate	Cobalt and Cobalt compounds (as Co)	0.1 mg/m3	Not Available	Not Available	Carc (cobalt dichloride and sulphate), Sen
UK Workplace Exposure Limits (WELs).	copper	Copper fume (as Cu)	0.2 mg/m3	Not Available	Not Available	Not Available
UK Workplace Exposure Limits (WELs).	aluminium	Aluminium metal: inhalable dust	10 mg/m3	Not Available	Not Available	Not Available
UK Workplace Exposure Limits (WELs).	aluminium	Aluminium metal: respirable dust	4 mg/m3	Not Available	Not Available	Not Available
UK Workplace Exposure Limits (WELs).	nickel	Nickel and its inorganic compounds (except nickel tetracarbonyl): nickel and water-insoluble nickel compounds (as Ni)	0.5 mg/m3	Not Available	Not Available	Sk, Carc (nickel oxides and sulphides) Sen (nickel sulphate)

Ingredient	TEEL-1	TEEL-2		TEEL-3	
graphite, natural	6 mg/m3	330 mg/m3		2,000 mg/m3	
lithium fluorophosphate	7.5 mg/m3	83 mg/m3		500 mg/m3	
copper	3 mg/m3	33 mg/m3		200 mg/m3	
nickel	4.5 mg/m3	50 mg/m3		99 mg/m3	
Ingredient	Original IDLH		Revised IDLH		
lithium cobaltate	Not Available		Not Available	Not Available	
graphite, natural	1,250 mg/m3		Not Available		
lithium fluorophosphate	Not Available		Not Available		
copper	100 mg/m3		Not Available		
aluminium	Not Available		Not Available		
nickel	10 mg/m3		Not Available		

Occupational Exposure Banding

Ingredient	Occupational Exposure Band Rating	Occupational Exposure Band Limit	
graphite, natural	E	≤ 0.01 mg/m³	
lithium fluorophosphate	E	≤ 0.01 mg/m³	
Notes:	Occupational exposure banding is a process of assigning chemicals into specific categories or bands based on a chemical's potency and the adverse health outcomes associated with exposure. The output of this process is an occupational exposure band (OEB), which corresponds to a range of exposure concentrations that are expected to protect worker health.		

MATERIAL DATA

For graphite:

Graphite pneumoconiosis resembles coal workers' pneumoconiosis. Data indicate that the higher the crystalline silica content of graphite the more likely the disease will increase in severity. The presence of anthracite coal in the production of some synthetic grades of graphite appears to make arbitrary the use of the term, "synthetic", "artificial" or "natural".

The TLV-TWA for carbon black is recommended to minimise complaints of excessive dirtiness and applies only to commercially produced carbon blacks or to soots derived from combustion sources containing absorbed polycyclic aromatic hydrocarbons (PAHs). When PAHs are present in carbon black (measured as the cyclohexane-extractable fraction) NIOSH has established a REL-TWA of 0.1 mg/m3 and considers the material to be an occupational carcinogen.

The NIOSH REL-TWA was "selected on the basis of professional judgement rather than on data delineating safe from unsafe concentrations of PAHs".

This limit was justified on the basis of feasibility of measurement and not on a demonstration of its safety.

For aluminium oxide and pyrophoric grades of aluminium:

Twenty seven year experience with aluminium oxide dust (particle size 96% 1,2 um) without adverse effects either systemically or on the lung, and at a calculated concentration equivalent to 2 mg/m3 over an 8-hour shift has lead to the current recommendation of the TLV-TWA.

The limit should also apply to aluminium pyro powders whose toxicity is reportedly greater than aluminium dusts and should be protective against lung changes.

For aluminium oxide:

The experimental and clinical data indicate that aluminium oxide acts as an "inert" material when inhaled and seems to have little effect on the lungs nor does it produce significant organic disease or toxic effects when exposures are kept under reasonable control.

[Documentation of the Threshold Limit Values], ACGIH, Sixth Edition

These exposure guidelines have been derived from a screening level of risk assessment and should not be construed as unequivocally safe limits. ORGS represent an 8-hour time-weighted average unless specified otherwise.

CR = Cancer Risk/10000; UF = Uncertainty factor:

TLV believed to be adequate to protect reproductive health:

LOD: Limit of detection

Toxic endpoints have also been identified as:

D = Developmental; R = Reproductive; TC = Transplacental carcinogen

Jankovic J., Drake F.: A Screening Method for Occupational Reproductive

American Industrial Hygiene Association Journal 57: 641-649 (1996)

for cobalt:

In view of the serious effects seen in experimental animals after a relatively short exposure period at 0.1 mg/m3 the recommended TLV-TWA is thought to reduce the significant risk of material impairment of health posed by respiratory disease and pulmonary sensitisation which have been shown to occur at higher levels of exposure. The value does not apply generally to cobalt compounds.

A significant increase in the risk of lung cancer was reported among workers involved in cobalt production (with concomitant exposure to nickel and arsenic) and hard-metal workers with documented exposure to cobalt-containing dusts. A significant increase in lung cancer risk has been observed in workers whose exposure began more than 20 years previously. A number of single cases of malignant tumours, mostly sarcomas, have been reported at the site, following implant of cobalt-containing orthopedic implants.

The concentration of dust, for application of respirable dust limits, is to be determined from the fraction that penetrates a separator whose size collection efficiency is described by a cumulative log-normal function with a median aerodynamic diameter of 4.0 um (+-) 0.3 um and with a geometric standard deviation of 1.5 um (+-) 0.1 um, i.e..generally less than 5 um. Because the margin of safety of the quartz TLV is not known with certainty and given the associated link between silicosis and lung cancer it is recommended that quartz concentrations be maintained as far below the TLV as prudent practices will allow.

Exposure to respirable crystalline silicas (RCS) represents a significant hazard to workers, particularly those employed in the construction industry where respirable dusts of of cement and concrete are common. Cutting, grinding and other high speed processes, involving their finished products, may further result in dusty atmospheres. Bricks are also a potential source of RCSs under such circumstances.

It is estimated that half of the occupations, involved in construction work, are exposed to levels of RCSs, higher than the current allowable limits. Beaudry et al: Journal of Occupational and Environmental Hygiene 10: 71-77; 2013

8.2. Exposure controls

	-			
	 Do not allow chips, fines or dusts to contact water, particularly in enclosed areas. Metal spraying and blasting should, where possible, be conducted in separate rooms. This minimises the risk of supplying oxygen, in the form of metal oxides, to potentially reactive finely divided metals such as aluminium, zinc, magnesium or titanium. Work-shops designed for metal spraying should possess smooth walls and a minimum of obstructions, such as ledges, on which dust accumulation is possible. Wet scrubbers are preferable to dry dust collectors. Bag or filter-type collectors should be sited outside the workrooms and be fitted with explosion relief doors. Cyclones should be protected against entry of moisture as reactive metal dusts are capable of spontaneous combustion in humid or partially wetted states. Local exhaust systems must be designed to provide a minimum capture velocity at the fume source, away from the worker, of 0.5 metre/sec. Local exhaust systems must be designed to handle explosive dusts. Dry vacuum and electrostatic precipitators must not be used, unless specifically approved for use with flammable/ explosive dusts. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant. Type of Contaminant: Air Speed: welding, brazing fumes (released at relatively low velocity into moderately still air) 0.5-1.0 m/s (100-200 f/min.) 			
				-
	Within each range the appropriate value depends on:			
	Lower end of the range	Upper end of the range		
	1: Room air currents minimal or favourable to capture 2: Contaminants of low toxicity or of nuisance value only.	1: Disturbing room air c 2: Contaminants of high		
	3: Intermittent, low production.	3: High production, hea		
	4: Large hood or large air mass in motion	4: Small hood-local con		
	Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2.5 m/s (200-500 f/min.) for extraction of gases discharged 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used. Exhaust ventilation should be designed to prevent accumulation and recirculation in the workplace and safely remove carbon black from the air. Note: Wet, activated carbon removes oxygen from the air and thus presents a severe hazard to workers inside carbon vessels and enclosed or confined spaces. Before entering such areas sampling and test procedures for low oxygen levels should be undertaken and control conditions set up to ensure ample oxygen availability.[Linde]			
8.2.2. Individual protection measures, such as personal protective equipment				
Eye and face protection	 Safety glasses with side shields. Chemical goggles. [AS/NZS 1337.1, EN166 or national equivalent] Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59]. 			
Skin protection	See Hand protection below			
Hands/feet protection	The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application. The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice. Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended. Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: frequency and duration of contact, echemical resistance of glove material, glove thickness and educed to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent). When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended. When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended. Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use. Contaminated gloves should be replaced. As defined in AST F-739-96 in any application, gloves are rated as: Excellent when breakthrough time < 20 min erait and splote thickness typically greater than 0.35 mm, are recommended. It should be emphasised that glove thickness is not necessarily a good predictor of glove resistance to a specific chemical, as the permeation efficiency of the glove material degrades for oursplaced.			

consideration of the task requirements and knowledge of breakthrough times.

data should always be taken into account to ensure selection of the most appropriate glove for the task.

Glove thickness may also vary depending on the glove manufacturer, the glove type and the glove model. Therefore, the manufacturers technical

Continued...

	 Note: Depending on the activity being conducted, gloves of varying thickness may be required for specific tasks. For example: Thinner gloves (down to 0.1 mm or less) may be required where a high degree of manual dexterity is needed. However, these gloves are only likely to give short duration protection and would normally be just for single use applications, then disposed of. Thicker gloves (up to 3 mm or more) may be required where there is a mechanical (as well as a chemical) risk i.e. where there is abrasion or puncture potential Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended. Protective gloves eg. Leather gloves or gloves with Leather facing Wear chemical protective gloves, e.g. PVC. Wear safety footwear or safety gumboots, e.g. Rubber
Body protection	See Other protection below
Other protection	 Overalls. Eyewash unit. Barrier cream. Skin cleansing cream.

Respiratory protection

Type -P Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent)

Required Minimum Protection Factor	Half-Face Respirator	Full-Face Respirator	Powered Air Respirator
up to 10 x ES	P1 Air-line*	-	PAPR-P1 -
up to 50 x ES	Air-line**	P2	PAPR-P2
up to 100 x ES	-	P3	-
		Air-line*	-
100+ x ES	-	Air-line**	PAPR-P3

* - Negative pressure demand ** - Continuous flow

A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC)

If inhalation risk above the TLV exists, wear approved dust respirator.

- Use respirators with protection factors appropriate for the exposure level.
- Up to 5 X TLV, use valveless mask type; up to 10 X TLV, use 1/2 mask dust respirator
- ▶ Up to 50 X TLV, use full face dust respirator or demand type C air supplied respirator
- + Up to 500 X TLV, use powered air-purifying dust respirator or a Type C pressure demand supplied-air respirator

• Over 500 X TLV wear full-face self-contained breathing apparatus with positive pressure mode or a combination respirator with a Type C positive pressure supplied-air full-face respirator and an auxiliary self-contained breathing apparatus operated in pressure demand or other positive pressure mode

· Respirators may be necessary when engineering and administrative controls do not adequately prevent exposures.

• The decision to use respiratory protection should be based on professional judgment that takes into account toxicity information, exposure measurement data, and frequency and likelihood of the worker's exposure - ensure users are not subject to high thermal loads which may result in heat stress or distress due to personal protective equipment (powered, positive flow, full face apparatus may be an option).

Published occupational exposure limits, where they exist, will assist in determining the adequacy of the selected respiratory protection. These may be government mandated or vendor recommended.

Certified respirators will be useful for protecting workers from inhalation of particulates when properly selected and fit tested as part of a complete respiratory protection program.
 Where protection from nuisance levels of dusts are desired, use type N95 (US) or type P1 (EN143) dust masks. Use respirators and components tested and approved under

appropriate government standards such as NIOSH (US) or CEN (EU)

 \cdot Use approved positive flow mask if significant quantities of dust becomes airborne.

· Try to avoid creating dust conditions.

Where significant concentrations of the material are likely to enter the breathing zone, a Class P3 respirator may be required.

Class P3 particulate filters are used for protection against highly toxic or highly irritant particulates.

Filtration rate: Filters at least 99.95% of airborne particles

Suitable for:

· Relatively small particles generated by mechanical processes eg. grinding, cutting, sanding, drilling, sawing.

· Sub-micron thermally generated particles e.g. welding fumes, fertilizer and bushfire smoke.

· Biologically active airborne particles under specified infection control applications e.g. viruses, bacteria, COVID-19, SARS

· Highly toxic particles e.g. Organophosphate Insecticides, Radionuclides, Asbestos

Note: P3 Rating can only be achieved when used with a Full Face Respirator or Powered Air-Purifying Respirator (PAPR). If used with any other respirator, it will only provide filtration protection up to a P2 rating.

8.2.3. Environmental exposure controls

See section 12

SECTION 9 Physical and chemical properties

9.1. Information on basic physical and chemical properties

Appearance	Not Available		
Physical state	Solid	Relative density (Water = 1)	Not Available
Odour	Not Available	Partition coefficient n-octanol / water	Not Available
Odour threshold	Not Available	Auto-ignition temperature (°C)	Not Available
pH (as supplied)	Not Available	Decomposition temperature (°C)	90

Melting point / freezing point (°C)	Not Available	Viscosity (cSt)	Not Available
Initial boiling point and boiling range (°C)	Not Available	Molecular weight (g/mol)	Not Available
Flash point (°C)	Not Available	Taste	Not Available
Evaporation rate	Not Available	Explosive properties	Not Available
Flammability	Not Available	Oxidising properties	Not Available
Upper Explosive Limit (%)	Not Available	Surface Tension (dyn/cm or mN/m)	Not Applicable
Lower Explosive Limit (%)	Not Available	Volatile Component (%vol)	Not Available
Vapour pressure (kPa)	Not Available	Gas group	Not Available
Solubility in water	Not Applicable	pH as a solution (1%)	Not Available
Vapour density (Air = 1)	Not Available	VOC g/L	Not Available
Nanoform Solubility	Not Available	Nanoform Particle Characteristics	Not Available
Particle Size	Not Available		

9.2. Other information

Not Available

SECTION 10 Stability and reactivity

10.1.Reactivity	See section 7.2
10.2. Chemical stability	 Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur.
10.3. Possibility of hazardous reactions	See section 7.2
10.4. Conditions to avoid	See section 7.2
10.5. Incompatible materials	See section 7.2
10.6. Hazardous decomposition products	See section 5.3

SECTION 11 Toxicological information

11.1. Information on toxicological effects

Inhaled	The material is not thought to produce respiratory irritation (as classified by EC Directives using animal models). Nevertheless inhalation of dusts, or fumes, especially for prolonged periods, may produce respiratory discomfort and occasionally, distress. Inhalation of dusts, generated by the material during the course of normal handling, may produce severe damage to the health of the individual. Relatively small amounts absorbed from the lungs may prove fatal. Side effects of the inhalation of cobalt and its compounds may include flushing of the face and ringing in the ears (tinnitus). Cobalt inhalation can be lethal in animals if exposure is sufficiently high or prolonged. The acute LC50 for a 30-minute inhalation exposure in rats was 165 mg cobalt/m3 as cobalt hydrocarbonyl. Exposure to 9 mg cobalt/m3 as cobalt hydrocarbonyl for 6 hours/day, 5 days/week for 3 months resulted in 16 deaths out of 75 rats. Death was reported in rats and mice exposed to 19 mg cobalt/m3 (but not 1.9 mg cobalt/m3) as cobalt sulfate over 16 days, but exposure to 1.1.4 mg cobalt/m3 over 13 weeks was lethal only to mice and not to rats. Exposure to 1.1.4 mg cobalt/m3 as cobalt sulfate for 104 weeks resulted in no increase in mortality in rats and mice of either sex. Inhalation of stable cobalt by humans and/or animals resulted in respiratory, cardiovascular, hematological, hepatic, renal, endocrine, ocular, and body weight effects. As with exposure for rats to relatively high levels (26-236 mg cobalt/m3 as cobalt hydrocarbonyl) resulted in congestion, edema, and hemorrhage of the lung. Prolonged exposure (3.4 months) of rats and rabbits to mixed cobalt oxiders (0.4-9 mg cobalt/m3) as cobalt hydrocarbonyl insulted in exposure (3.4 months) of rats and rabbits on exposed to 2.4 mg cobalt/m3 as cobalt hydrocarbonyl indimmatory changes (altered BAL fluid recovery, increased neutrophils and eosinophils in the recovered BAL fluid) that were different than those in exposed animals not sensitised to cobalt. Decreased lung complian

	Although carbon itself has no toxic action, associated impurities may be toxic. Iodine is often found as an impurity and air-borne carbon dusts, as a result, may produce irritation of the mucous membranes, the eyes, and skin. Symptoms of exposure may include coughing, irritation of the nose and throat and burning of the eyes. Copper poisoning following exposure to copper dusts and fume may result in headache, cold sweat and weak pulse. Capillary, kidney, liver and brain damage are the longer term manifestations of such poisoning. Inhalation of freshly formed metal oxide particles sized below 1.5 microns and generally between 0.02 to 0.05 microns may result in "metal fume fever". Symptoms may be delayed for up to 12 hours and begin with the sudden onset of thirst, and a sweet, metallic or foul taste in the mouth. Other symptoms include upper respiratory tract irritation accompanied by coughing and a dryness of the mucous membranes, lassitude and a generalised feeling of malaise. Mild to severe headache, nausea, occasional vomiting, fever or chills, exaggerated mental activity, profuse sweating, diarrhoea, excessive urination and prostration may also occur. Tolerance to the fumes develops rapidly, but is quickly lost. All symptoms usually subside within 24-36 hours following removal from exposure.
Ingestion	Severely toxic effects may result from the accidental ingestion of the material; animal experiments indicate that ingestion of leas than 5 gram may be fatter may produce serious damage to the health of the individual. Large doese of lithium ion have caused dzizness and quotestation and cause kidney damage if sodium intake is limited. Dehydration, weight-loss, dermatological effects and thyridid distubances have been reported. Central nervous system effects that induced suired speech, blurred vision, sensory loss, impaired concentration, irritability, lethney, contaison, discontation, drawings, anxiety, spasiticity, delivinm, stupo, tatxia (loss of muscle coordination), sedation, fine and gross tremor, gliddines, tituticity and convulsions may occur. Baintone, vomiting and neuromuscular effects sund as tremor, clorus (ripid contraction and relaxation of muscles) and hyperactive reflexes may accur as a result of repeated exposure to lithium. Acute severo overcexposure may affect the kidneys, resulting in renal dysfunction, albuminuria, oliguria and degenerative changes. Cardiovascular effects may also result in cardiac arrhythmis and hypotension. The primary traject gran for lithium toxicity is the central nervous system. Lithium is therefore used therapeutically on membrane transport proteins in the central nervous system when treating manic-depression. Lithium is moderately toxic with lethal dose of Lich rats of 526-400 mg/kg body weight. After chronic exposure to 1 may confined to the more soluble forms. Ingestion of finely divided carbon may produce gagging and constipation. Aspiration dees not appear to be a concern as the material is generally regarded as in term and is often used toxic. Breaston and y produce a toxic. Ingestion of acidic corrosives may produce circumoral burns with a distinct discolouration of the exposures may produce a vortitus containing fish or dark blood and large shreed diructosa. Body with marked hypotension, weak and rapid puise, shreed resultar or darker sodin may
Skin Contact	copper. Skin contact is not thought to produce harmful health effects (as classified under EC Directives using animal models). Systemic harm, however, has been identified following exposure of animals by at least one other route and the material may still produce health damage following entry through wounds, lesions or abrasions. Good hygiene practice requires that exposure be kept to a minimum and that suitable gloves be used in an occupational setting. Contact with aluminas (aluminium oxides) may produce a form of irritant dermatitis accompanied by pruritus. Though considered non-harmful, slight irritation may result from contact because of the abrasive nature of the aluminium oxide particles. Irritation and skin reactions are possible with sensitive skin Skin contact with acidic corrosives may result in pain and burns; these may be deep with distinct edges and may heal slowly with the formation of scar tissue. Exposure to copper, by skin, has come from its use in pigments, ointments, ornaments, jewellery, dental amalgams and IUDs and as an antifungal agent and an algicide. Although copper algicides are used in the treatment of water in swimming pools and reservoirs, there are no reports of toxicity from these applications. Reports of allergic contact dermatitis following contact with copper and its salts have appeared in the literature, however the exposure concentrations leading to any effect have been poorly characterised. In one study, patch testing of 1190 eczema
	patients found that only 13 (1.1%) cross-reacted with 2% copper sulfate in petrolatum. The investigators warned, however, that the possibility of

Continued...

examination with a decision in a balanch of the exposed in the family and the exposed in the exposed in the family and the exposed in the exp		
produce significant could reacted may cause threst-fuel hours or more after maintains in the reyst of the reyst of the region of the		eczema in contact with skin. This is, likely, of a non-allergic nature. Open cuts, abraded or irritated skin should not be exposed to this material Entry into the blood-stream through, for example, cuts, abrasions, puncture wounds or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.
Current Cur	Eye	produce significant ocular lesions which are present twenty-four hours or more after instillation into the eye(s) of experimental animals. Repeated or prolonged eye contact may cause inflammation characterised by temporary redness (similar to windburn) of the conjunctiva (conjunctivitis); temporary impairment of vision and/or other transient eye damage/ulceration may occur. Irritation of the eyes may produce a heavy secretion of tears (lachrymation). Direct eye contact with acid corrosives may produce pain, lachrymation, photophobia and burns. Mild burns of the epithelia generally recover rapidly and completely. Severe burns produce long-lasting and possible irreversible damage. The appearance of the burn may not be apparent for several weeks after the initial contact. The cornea may ultimately become deeply vascularised and opaque resulting in blindness. Symptoms of exposure by the eye to carbon particulates include irritation and a burning sensation. Following an industrial explosion, fine particles become embedded in the cornea and conjunctiva resulting in an inflammation which persisted for 2-3 weeks. Some particles remained permanently producing a punctate purplish-black discolouration.
developing nervous system, between 10 and 42 mg aluminium/kg bw per day, respectively.	Chronic	There is sufficient evidence to provide a strong presumption that human exposure to the material may result in the development of heritable genetic damage, generally on the basis of

Controversy exists over whether aluminium is the cause of degenerative brain disease (Alzheimer's disease or AD). Several epidemiological studies show a possible correlation between the incidence of AD and high levels of aluminium in drinking water. A study in Toronto, for example,

found a 2.6 times increased risk in people residing for at least 10 years in communities where drinking water contained more than 0.15 mg/l aluminium compared with communities where the aluminium level was lower than 0.1 mg/l. A neurochemical model has been suggested linking aluminium exposure to brain disease. Aluminium concentrates in brain regions, notably the hippocampus, cerebral cortex and amygdala where it preferentially binds to large pyramid-shaped cells - it does not bind to a substantial degree to the smaller interneurons. Aluminium displaces magnesium in key metabolic reactions in brain cells and also interferes with calcium metabolism and inhibits phosphoinositide metabolism. Phosphoinositide normally controls calcium ion levels at critical concentrations.

Under the microscope the brain of AD sufferers show thickened fibrils (neurofibrillary tangles - NFT) and plaques consisting of amyloid protein deposited in the matrix between brain cells. Tangles result from alteration of "tau" a brain cytoskeletal protein. AD tau is distinguished from normal tau because it is hyperphosphorylated. Aluminium hyperphosphorylates tau in vitro. When AD tau is injected into rat brain NFT-like aggregates form but soon degrade. Aluminium stabilises these aggregates rendering them resistant to protease degradation. Plaque formation is also enhanced by aluminium which induces the accumulation of amyloid precursor protein in the thread-like extensions of nerve cells (axons and dendrites). In addition aluminium has been shown to depress the activity of most neuro-transmitters similarly depressed in AD (acetylcholine, norepinephrine, glutamate and GABA).

Aluminium enters the brain in measurable quantities, even when trace levels are contained in a glass of tap water. Other sources of bioavailable aluminium include baking powder, antacids and aluminium products used for general food preparation and storage (over 12 months, aluminium levels in soft drink packed in aluminium cans rose from 0.05 to 0.9 mg/l). [Walton, J and Bryson-Taylor, D. - Chemistry in Australia, August 1995] In general, available cohort studies in humans have not reported a significant increase in total mortality as a result of cobalt exposure. Several studies have noted increased mortality rates resulting from lung cancer following occupational exposure to cobalt, either as a mixture of cobalt compounds or as hard metal, a metal alloy with a tungsten carbide and cobalt matrix. Fatal cases of hard metal disease and cardiomyopathy believed to have resulted from occupational cobalt exposure have also been reported. However, in the majority of these and other reported occupational studies, co-exposure to other substances was common, and was unable to be corrected for in the analysis.

The effects of chronic occupational exposure to cobalt and cobalt compounds on the respiratory system in humans are well-documented. These effects include respiratory irritation, diminished pulmonary function, wheezing, asthma, pneumonia, and fibrosis and occurred at exposure levels ranging from 0.007 to 0.893 mg cobalt/m3 (exposure from 2 to 17 years). These effects have been observed in workers employed in cobalt refineries, as well as hard metal workers, diamond polishers, and ceramic dish painters (painting with cobalt blue dye).

Occupational asthma attributed to the inhalation of cobalt powder has been confirmed following bronchial challenge tests. Chest tightness and chronic bronchitis have been recorded in hard-metal workers exposed to cobalt. Cobalt is known to function as a hapten, resulting in the generation of antibodies against cobalt-protein complexes. Although the minimum exposure level associated with cobalt sensitisation has not been determined, sensitisation has been demonstrated in hard metal workers with work-related asthma who have experienced prolonged occupational exposure (>3 years) to levels ranging from 0.007 to 0.893 mg cobalt/m3. The sensitisation phenomenon includes the production of IgE and IgA antibodies to cobalt. Exposure to inhaled cobalt chloride aerosols can precipitate an asthmatic attack in sensitised individuals believed to be the result of an allergic reaction within the lungs.

Allergic dermatitis of an erythematous papular type may also occur following occupational exposure. Dermatitis is a common result of dermal exposure to cobalt in humans that has been verified in a large number of studies. Using patch tests and intradermal injections, it has been demonstrated that the dermatitis is probably caused by an allergic reaction to cobalt. Contact allergy was reported in 22 of 223 (9.9%) nurses who were tested with a patch test of 1.0% cobalt chloride as well as 16 of 79 (20.3%) of examined dentists. Persons with body piercings showed an increased prevalence of allergy to cobalt, with the incidence of contact allergy being proportional to number of piercings The prevalence of sensitivity to cobalt following exposure to cobalt as a component of metal implants is low, with only 3.8% of patients developing a new sensitivity to cobalt following insertion of the implant

Exposure levels associated with the development of dermatitis have not been identified. It appears that the allergic properties of cobalt result mainly from exposure to the metal itself, rather than a salt, as it has been demonstrated that daily repeated exposure to aqueous cobalt salts did not result in hand eczema in patients known to have cobalt allergy.

Occupational exposure to cobalt in humans has been reported to cause several effects on the nervous system, including memory loss, nerve deafness, and a decreased visual acuity. It should be noted though, that both of the studies reporting on these findings, had small numbers of subjects, and exposure characterization was not reported.

Chronic exposure to cobalt produces polycythaemia (increase in blood haemoglobin), increased production of cells of the bone marrow and thyroid gland, pericardial effusion and damage to the alpha cells of the pancreas. Chronic exposure to cobalt compounds may result in pericardial effusion, polycardial effusion, cardiac failure, vomiting, convulsions and thyroid enlargement.

Chronic administration of cobaltous chloride has produced goiter, reduced thyroid activity and lowered synthesis rates and levels of cytochrome P-450, an enzymatic system responsible for chemical detoxification, in the liver. A toxic nephritis (kidney disease) may also develop. Epidemic cardiomyopathy (heart disease) among heavy beer drinkers in the 1960's in Canada, the USA and Belgium has been attributed to the addition of up to 1.5 ppm of cobalt as a foam restorative and stabiliser. Other factors are probably implicated as therapeutic doses of cobalt, up to 50 mg/day (in the treatment of refractory anaemias) do not produce this effect. Inadequate protein or vitamin intake amongst heavy drinkers, or the effects of alcohol in rendering the heart more susceptible to disease may be important.

Single and repeated subcutaneous or intramuscular injection of cobalt powder and salts to rats may cause sarcoma at the injection site but evidence for carcinogenicity by any other route of exposure does not exist. A number of single cases of malignant tumours, mostly sarcomas, have been reported at the site of orthopedic implants containing cobalt.

Animals, exposed to cobalt compounds also exhibit an increase in respiration, as well as tremor and convulsion. Exposure of rats and mice to aerosols of cobalt (as cobalt sulfate) at concentrations from 0.11 to 1.14 mg cobalt/m3 for 2 years resulted in a spectrum of inflammatory, fibrotic, and proliferative lesions in the respiratory tract of male and female rats and mice. Squamous metaplasia of the larynx occurred in rats and mice at exposure concentrations of .0.11 mg cobalt/m3, with severity of the lesion increased goalt concentration. Hyperplastic lesions of the nasal epithelium occurred in rats at concentrations of .0.11 mg cobalt/m3. Both sexes of rats had greatly increased incidences (>90% incidence) of alveolar lesions at all exposure levels, including inflammatory changes, fibrosis, and metaplasia. Similar changes were seen in mice at all exposure levels, though the changes in mice were less severe.

Cobalt metal dust inhalations by miniature swine resulted in early marked decrease in lung compliance and increases in septal collagen. After a one-week "sensitising period", followed by a 10-day lapse period, further exposures resulted in wheezing produced by hypersensitivity reactions. Repeated or prolonged exposure to acids may result in the erosion of the teth, inflammatory and ulcerative changes in the mouth and necrosis (rarely) of the jaw. Bronchial irritation, with cough, and frequent attacks of bronchial pneumonia may ensue. Gastrointestinal disturbances may also occur. Chronic exposures may result in dermatitis and/or conjunctivitis.

The impact of inhaled acidic agents on the respiratory tract depends upon a number of interrelated factors. These include physicochemical characteristics, e.g., gas versus aerosol; particle size (small particles can penetrate deeper into the lung); water solubility (more soluble agents are more likely to be removed in the nose and mouth). Given the general lack of information on the particle size of aerosols involved in occupational exposures to acids, it is difficult to identify their principal deposition site within the respiratory tract. Acid mists containing particles with a diameter of up to a few micrometers will be deposited in both the upper and lower airways. They are irritating to mucous epithelia, they cause dental erosion, and they produce acute effects in the lungs (symptoms and changes in pulmonary function). Asthmatics appear to be at particular risk for pulmonary effects.

Neuromuscular effects result from chronic over-exposure to lithium compounds. These may include tremor, ataxia, clonus and hyperactive reflexes. Some animal studies have shown that exposure during pregnancy may produce birth defects. Other studies with rats, rabbits and monkeys have not shown teratogenic effects. Human data are ambiguous; it is well established that lithium can cross the human placenta. Of 225 registered pregnancies in which the mothers had received lithium (as a tranquiliser) there were 25 instances of congenital malformation. Although pharmacological doses of lithium cannot be unequivocally designated as a human teratogen, lithium therapy is contraindicated in women of childbearing potential.

Prolonged exposure may produce anorexia, weight loss and emaciation. The kidneys, behavioural/ central nervous system and peripheral nervous system may also show adverse effects.

Various types of dermatitis (psoriasis, alopecia, cutaneous ulcers, acne, follicular papules, xerosis cutis, exfoliative) may also result from chronic skin exposure.

Lithium ion can be an effective treatment for manic depression. It is thought to bind the enzyme IMPase (inositol monophosphatase) and thereby

mediates its influence in producing a response to calcium-induced production of neurotransmitters and hormones thought to be responsible for the clinical picture.

Lithium ions interfere with ion transport processes (involving the "sodium pump") that relay and amplify messages carried to the cells of the brain. Mania is associated with irregular increases in protein kinase C (PKC) activity within the brain. Lithium carbonate and sodium valproate, another drug traditionally used to treat the disorder, act in the brain by inhibiting PKC's activity and help to produce other compounds that also inhibit the PKC.

Taking lithium salts has risks and side effects. Extended use of lithium to treat various mental disorders has been known to lead to acquired nephrogenic diabetes insipidus. Nephrogenic diabetes insipidus (NDI), also known as renal diabetes insipidus, is a form of diabetes insipidus primarily due to pathology of the kidney. This is in contrast to central or neurogenic diabetes insipidus, which is caused by insufficient levels of antidiuretic hormone (ADH, also called vasopressin). Nephrogenic diabetes insipidus is caused by an improper response of the kidney to ADH, leading to a decrease in the ability of the kidney to concentrate the urine by removing free water.

Lithium intoxication can affect the central nervous system and renal system and can be lethal

In subchronic studies, rats were exposed to 3 milliequivalents Li/kg/day (equivalent to 1450 mg for a 70 kg person) but did not accumulate Li whilst on a high sodium diet. However when sodium was restricted, fatal kidney toxicity developed. Dogs survived daily dose of 50 mg LiCl/kg for 150 days to the termination of the experiment on a normal sodium intake, whereas the same dose was lethal in 12 to 18 days on a low sodium diet: 20 mg LiCl/kg/day resulted in death in 18 to 30 days.

Several reports have demonstrated that lithium may impair basal ganglia activity. Lithium intoxication has been associated, severe and persistent oculogyric crises. Oculogyric crisis (OGC) is the name of a dystonic reaction to certain drugs or medical conditions characterized by a prolonged involuntary upward deviation of the eyes. The term "oculogyric" refers to the bilateral elevation of the visual gaze but several other responses are associated with the crisis.

Chronic symptoms produced by crystalline silicas included decreased vital lung capacity and chest infections. Lengthy exposure may cause silicosis a disabling form of pneumoconiosis which may lead to fibrosis, a scarring of the lining of the air sacs in the lung.

The form and severity in which silicosis manifests itself depends in part on the type and extent of exposure to silica dusts: chronic, accelerated and acute forms are all recognized. In later stages the critical condition may become disabling and potentially fatal. Restrictive and/or obstructive lung function changes may result from chronic exposure. A risk associated with silicosis is development of pulmonary tuberculosis (silico-tuberculosis). Respiratory insufficiencies due to massive fibrosis and reduced pulmonary function, possibly with accompanying heart failure, are other potential causes of death due to silicosis.

Not all individuals with silicosis will exhibit symptoms (signs) of the disease. However, silicosis can be progressive, and symptoms may potentially appear years after exposures have ceased. Symptoms of silicosis may include (but are

not limited to): Shortness of breath; difficulty breathing with or without exertion; coughing; diminished work capacity; diminished chest expansion; reduction of lung volume; heart enlargement and/or failure.

Respirable dust containing newly broken particles has been shown to be more hazardous to animals in laboratory tests than

respirable dust containing older silica particles of similar size. Respirable silica particles which had aged for sixty days or more showed less lung injury in animals than equal exposures of respirable dust containing newly broken pieces of silica. There are reports in the literature indicating that crystalline silica exposure may be associated with adverse health effects involving the kidney, scleroderma (thickening of the skin caused by swelling and thickening of fibrous tissue) and other autoimmune and immunity-related disorders. Several studies of persons with silicosis or silica exposure also indicate or suggest increased risk of developing lung cancer, a risk that may increase with the duration of exposure. Many of these studies of silicosis do not account for lung cancer confounders, especially smoking.

Symptoms may appear 8 to 18 months after initial exposure. Smoking increases this risk. Classic silicosis is a chronic disease characterised by the formation of scattered, rounded or stellate silica-containing nodules of scar tissue in the lungs ranging from microscopic to 1.0 cm or more. The nodules isolate the inhaled silica particles and protect the surrounding normal and functioning tissue from continuing injury. Simple silicosis (in which the nodules are less than 1.0 cm in diameter) is generally asymptomatic but may be slowly progressive even in the absence of continuing exposure. Simple silicosis can develop in complicated silicoses (in which nodules are greater than 1.0 cm in diameter) and can produce disabilities including an associated tuberculous infection (which 50 years ago accounted for 75% of the deaths among silicotic workers). Crystalline silica deposited in the lungs causes epithelial and macrophage injury and activation. Crystalline silica translocates to the interstitium and the regional lymph nodes and cause the recruitment of inflammatory cells in a dose dependent manner. In humans, a large fraction of crystalline silica persists in the lungs. The question of potential carcinogenicity associated with chronic inhalation of crystalline silica remains equivocal with some studies supporting the proposition and others finding no significant association. The results of recent epidemiological studies suggest that lung cancer risk is elevated only in those patients with overt silicosis. A relatively large number of epidemiological studies have been undertaken and in some, increased risk gradients have been observed in relation to dose surrogates - cumulative exposure, duration of exposure, the presence of radiographically defined silicosis, and peak intensity exposure. Chronic inhalation in rats by single or repeated intratracheal instillation produced a significant increase in the incidences of adenocarcinomas and squamous cell carcinomas of the lung. Lifetime inhalation of crystalline silica (87% alpha-quartz) at 1 mg/m3 (74% respirable) by rats, produced an increase in animals with keratinising cystic squamous cell tumours, adenomas, adenocarcinomas, adenosquamous cell carcinomas, squamous cell carcinoma and nodular bronchiolar alveolar hyperplasia accompanied by extensive subpleural and peribronchiolar fibrosis, increased pulmonary collagen content, focal lipoproteinosis and macrophage infiltration. Thoracic and abdominal malignant lymphomas developed in rats after single intrapleural and intraperitoneal injection of suspensions of several types of quartz.

Some studies show excess numbers of cases of schleroderma, connective tissue disorders, lupus, rheumatoid arthritis chronic kidney diseases, and end-stage kidney disease in workers

NOTE: Some jurisdictions require health surveillance be conducted on workers occupationally exposed to silica, crystalline. Such surveillance should emphasise

- · demography, occupational and medical history and health advice
- standardised respiratory function tests such as FEV1, FVC and FEV1/FVC
- standardised respiratory function tests such as FV1, FVC and FEV1/FVC
 - chest X-ray, full size PA view
 - records of personal exposure

The synthetic, amorphous silicas are believed to represent a very greatly reduced silicosis hazard compared to crystalline silicas and are considered to be nuisance dusts.

When heated to high temperature and a long time, amorphous silica can produce crystalline silica on cooling. Inhalation of dusts containing crystalline silicas may lead to silicosis, a disabling pulmonary fibrosis that may take years to develop. Discrepancies between various studies showing that fibrosis associated with chronic exposure to amorphous silica and those that do not may be explained by assuming that diatomaceous earth (a non-synthetic silica commonly used in industry) is either weakly fibrogenic or nonfibrogenic and that fibrosis is due to contamination by crystalline silica content

Repeated exposure to synthetic amorphous silicas may produce skin dryness and cracking.

Available data confirm the absence of significant toxicity by oral and dermal routes of exposure.

Numerous repeated-dose, subchronic and chronic inhalation toxicity studies have been conducted in a number of species, at airborne concentrations ranging from 0.5 mg/m3 to 150 mg/m3. Lowest-observed adverse effect levels (LOAELs) were typically in the range of 1 to 50 mg/m3. When available, the no-observed adverse effect levels (NOAELs) were between 0.5 and 10 mg/m3. Differences in values may be due to particle size, and therefore the number of particles administered per unit dose. Generally, as particle size diminishes so does the NOAEL/ LOAEL. Exposure produced transient increases in lung inflammation, markers of cell injury and lung collagen content. There was no evidence of interstitial pulmonary fibrosis.

Prolonged or repeated inhalation of dust may result in pneumoconiosis (lung disease caused by inhalation dust).

Graphite workers have reported symptoms of headaches, coughing, depression, low appetite, dyspnoea (difficult breathing) and black sputum. A number of studies indicate that graphitosis is a progressive and disabling disease and that the presence of crystalline silica and some silicates as graphite impurities have a pronounced synergistic effect.

Workers suffering from graphite pneumoconiosis have generally worked in the industry for long periods, i.e. 10 years or more, although some cases have been reported after as little as four years.

Data indicate the higher the crystalline silica content of graphite the greater is the severity of the pneumoconiosis.

Pre-employment and periodic examinations should be directed towards detecting significant respiratory disease through chest X-rays and pulmonary function tests

Chronic inhalation exposure of production workers has caused decreased pulmonary function ad myocardial dystrophy. There is suggestive but inconclusive evidence that carbon black containing polyaromatic hydrocarbons (PAHs) has been responsible for induction of skin cancers in exposed workers.

Long term inhalation of carbon black can cause cough, phlegm, tiredness, chest pain and headache. Dermal, mucosal, or inhalation exposure can cause irritation.

Inhalation of carbon black by mice rats and monkeys caused thickened alveolar walls, increased pulmonary collagen, right atrial and ventricular strain, hypertrophy of the right atrial and ventricular septum and increased heart weights. Although carbon black itself did not cause cancer in treated animals, carbon black containing polyaromatic hydrocarbons (PAHs) did cause cancer following chronic administration by all routes tested.

Epidemiological studies of workers in the carbon black producing industries of North America and Western Europe show no significant health effect due to occupational exposure to carbon black. Several other studies provide conflicting evidence. Early studies in the former USSR and Eastern Europe report respiratory diseases amongst workers exposed to carbon black, including bronchitis, pneumonia, emphysema and rhinitis. These studies are of questionable validity due to inadequate study design and methodology, lack of appropriate controls for cigarette smoking and other confounding factors such as concurrent exposure to carbon dioxide, coal oil and petroleum vapours. Moreover, review of these studies indicates that the concentrations of carbon black were greater than current occupational standards.

Carbon black may cause adverse pulmonary changes following prolonged or repeated inhalation of the dust; these include oral mucosal lesions, bronchitis and pneumoconiosis which may lead to lung tumours.

The body of evidence of carcinogenicity in animal studies comes from two chronic inhalation studies and two intratracheal instillation studies in rats, which showed significantly elevated rates of lung cancer in exposed animals. An inhalation study was tested on mice, but did not show significantly elevated rates of lung cancer in exposed animals. Epidemiologic data comes from three different cohort studies of carbon black production workers. Two studies, from the United Kingdom and Germany, with over 1,000 workers in each study group, showed elevated mortality from lung cancer in the carbon black workers. Another study of over 5,000 workers in the United States did not show elevated mortality from lung cancer in the carbon black workers. Newer findings of increased lung cancer mortality in an update from the UK study may suggest that carbon black could be a late-stage carcinogen. However, a more recent and larger study from Germany did not confirm this hypothesis that carbon black acts as a late-stage carcinogen.

In studies employing channel and furnace black, hamsters, mice, guinea pigs, rabbits and monkeys exposed to dusts for 7 hours/day, 5 days/week, at concentrations of 87.4 mg/m3 for channel black and 56.5 mg/m3 for furnace black, no malignancies were observed in any of the animals. Channel black had little if any absorbed polyaromatic hydrocarbons (PAHs) (as benzene extractables) whilst furnace black had 0.28%. Several findings have strengthened the association between inflammation and cancer and between the particle surface area dose of carbon black and other poorly soluble low toxicity (PSLT) particles and the pulmonary inflammation response in mice and the proinflammatory effects in lung cells in vitro. Other evidence suggests that in addition to a cancer mechanism involving indirect genotoxicity through inflammation and oxidative stress, nanoparticles may act as direct carcinogens .

Carbon black appears to act like PSLT particles, which can elicit lung tumours in rats following prolonged exposure to sufficiently high concentrations of particles. Particle surface area dose was found to be most predictive of pulmonary inflammation and tumour response in rats when comparing the dose-response relationships for various types and sizes of PSLT including carbon black. Compared to fine PSLT, much lower concentrations of ultrafine PSLT (e.g. 2.5, 6.5 or 11.5 mg/m3 carbon black and ~10 mg/m3 ultrafine titanium dioxide) were associated with impaired clearance, persistent inflammation, and malignant lung tumours in chronic inhalation studies in rats. Most evidence suggests that carbon black and other PSLT-elicited lung tumours occurs through a secondary genotoxic mechanism, involving chronic inflammation and oxidative stress. Experimental studies have shown that when the particle lung dose reaches a sufficiently high concentration (e.g., mass dose of ~0.5 mg fine-sized PSLT/g lung in rats), the alveolar macrophage-medicated clearance process begins to be impaired (complete impairment occurs at ~10 mg/g lung. Overloading of lung clearance is accompanied by pulmonary inflammation, leading to increased production of reactive oxygen and nitrogen species, depletion of antioxidants and/or impairment of other defense mechanisms, cell injury, cell proliferation, fibrosis, and as seen in rats, induction of mutations and eventually cancer. Rats appear to be more sensitive to carbon black and other PSLT than other rodent species. Although studies in humans have not shown a direct link between inhaled PSLT and lung cancer, many of the steps in the mechanism observed in rats have also been observed in humans who work in dusty jobs, including increased particle lung retention and pulmonary inflammation in workers exposed to coal dust or crystalline silica and elevated lung cancer has been observed in some studies of workers exposed to carbon black, crystalline silica, and diesel exhaust particles

Monkeys exposed to channel black for 1000-1500 hours showed evidence of electrocardiac changes indicative of right atrial and right ventricular strain. These changes increased progressively until after 10,000 hours of exposure, when the changes were marked. The authors of this study concluded that there was no significant effect due to prolonged exposure other than those expected from the accumulation of non-toxic dusts in the pulmonary system. Exposure to furnace black produced a similar picture although electrocardiographic change was first observed in monkeys after 2500 hours' exposure and marked atrial and right ventricular strain after 10,000 hours' exposure. The authors concluded that there was no significant effect due to prolonged exposure other than those expected from the accumulation of nontoxic dusts in the pulmonary system. Exposure to furnace black produced a similar picture although electrocardiographic change was first observed in monkeys after 2500 hours exposure and marked atrial and right ventricular strain after 10,000 hours exposure.

Chromatographic fractions of oily material extracted from carbon black have been shown to be carcinogenic whilst the unfractionated extracts are not. The activity of some carcinogens appear to be inhibited by carbon black itself.

For copper and its compounds (typically copper chloride):

Acute toxicity: There are no reliable acute oral toxicity results available. Animal testing shows that skin in exposure to copper may lead to hardness of the skin, scar formation, exudation and reddish changes. Inflammation, irritation and injury of the skin were noted.

Repeat dose toxicity: Animal testing shows that very high levels of copper monochloride may cause anaemia.

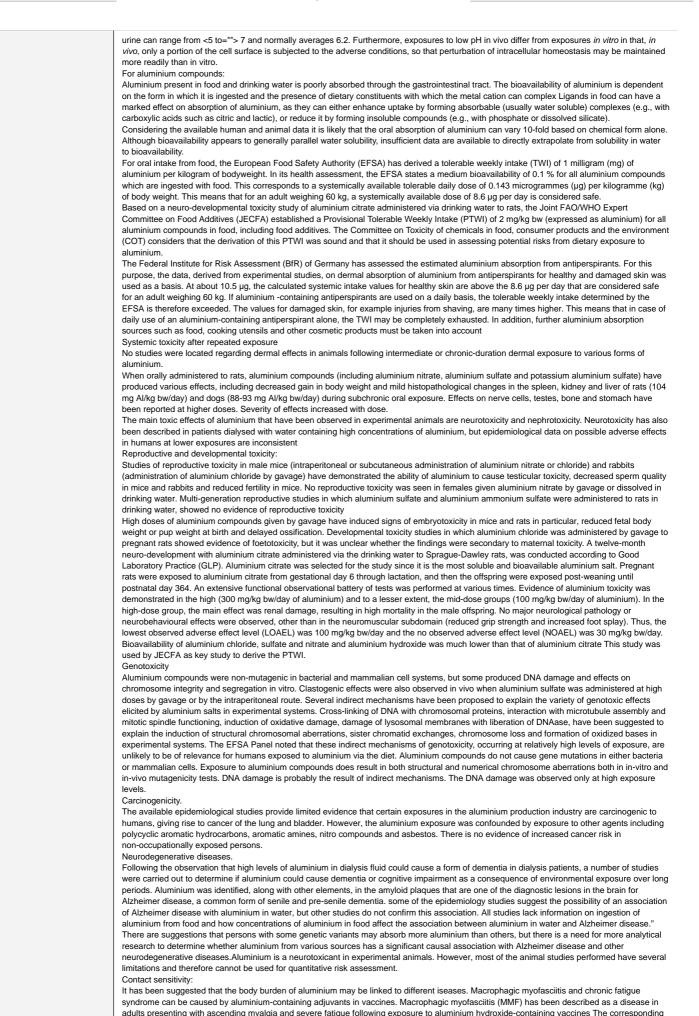
Genetic toxicity: Copper monochloride does not appear to cause mutations in vivo, although chromosomal aberrations were seen at very high concentrations in vitro

Cancer-causing potential: There was insufficient information to evaluate the cancer-causing activity of copper monochloride.

On the basis, primarily, of animal experiments, concern has been expressed that the material may produce carcinogenic or mutagenic effects; in respect of the available information, however, there presently exists inadequate data for making a satisfactory assessment.

Overexposure to the breathable dust may cause coughing, wheezing, difficulty in breathing and impaired lung function. Chronic symptoms may include decreased vital lung capacity and chest infections. Repeated exposures in the workplace to high levels of fine-divided dusts may produce a condition known as pneumoconiosis, which is the lodgement of any inhaled dusts in the lung, irrespective of the effect. This is particularly true when a significant number of particles less than 0.5 microns (1/50000 inch) are present. Lung shadows are seen in the X-ray. Symptoms of pneumoconiosis may include a progressive dry cough, shortness of breath on exertion, increased chest expansion, weakness and weight loss. As the disease progresses, the cough produces stringy phlegm, vital capacity decreases further, and shortness of breath becomes more severe. Other signs or symptoms include changed breath sounds, reduced oxygen uptake during exercise, emphysema and rarely, pneumothorax (air in the lung cavity).

Removing workers from the possibility of further exposure to dust generally stops the progress of lung abnormalities. When there is high potential for worker exposure, examinations at regular period with emphasis on lung function should be performed


Inhaling dust over an extended number of years may cause pneumoconiosis, which is the accumulation of dusts in the lungs and the subsequent tissue reaction. This may or may not be reversible.

402E Electronic Super Duster	

	TOXICITY	IRRITATION
nic Super Duster	Not Available	Not Available

	TOXICITY	IRRITATION	
lithium och eltete	dermal (rat) LD50: >2000 mg/kg ^[1]	Not Available	
lithium cobaltate	Inhalation(Rat) LC50: 5.05 mg/l4h ^[1]		
	Oral (Rat) LD50: >5000 mg/kg ^[1]		
	ΤΟΧΙΟΙΤΥ	IRRITATION	
	Inhalation(Rat) LC50: >2 mg/L4h ^[1]	Eye (rabbit): non-irritant *	
graphite, natural	Oral (Rat) LD50: >200 mg/kg ^[1]	Eye : Not irritating	
		Skin (rabbit): 4 h non-irritant *	
		Skin : Not irritating	
	ΤΟΧΙΟΙΤΥ	IRRITATION	
lithium fluorophosphate	Oral (Rat) LD50: 50-300 mg/kg ^[1]	Not Available	
	ΤΟΧΙΟΙΤΥ	IRRITATION	
	dermal (rat) LD50: >2000 mg/kg ^[1]	Eye: no adverse effect observed (not irritating) ^[1]	
copper	Inhalation(Rat) LC50: 0.733 mg/l4h ^[1]	Skin: no adverse effect observed (not irritating) ^[1]	
	Oral (Mouse) LD50; 0.7 mg/kg ^[2]		
	ΤΟΧΙΟΙΤΥ	IRRITATION	
aluminium	Inhalation(Rat) LC50: >2.3 mg/l4h ^[1]	Eye: no adverse effect observed (not irritating) ^[1]	
	Oral (Rat) LD50: >2000 mg/kg ^[1]	Skin: no adverse effect observed (not irritating) ^[1]	
	ΤΟΧΙΟΙΤΥ	IRRITATION	
nickel	Oral (Rat) LD50: 5000 mg/kg ^[2]	Eye: no adverse effect observed (not irritating) ^[1]	
		Skin: no adverse effect observed (not irritating) ^[1]	
Legend:	1. Value obtained from Europe ECHA Registered Substa specified data extracted from RTECS - Register of Toxic	nces - Acute toxicity 2. Value obtained from manufacturer's SDS. Unless otherwis Effect of chemical Substances	
	For silica amorphous:	(1000	
	Derived No Adverse Effects Level (NOAEL) in the range	of 1000 mg/kg/d. ly non-toxic by mouth, skin or eyes, and by inhalation. Epidemiology studies sh	

402E Electronic Super Duster	In humans, synthetic amorphous silica (SAS) is essentially non-toxic by mouth, skin or eyes, and by inhalation. Epidemiology studies show little evidence of adverse health effects due to SAS. Repeated exposure (without personal protection) may cause mechanical irritation of the eye and drying/cracking of the skin. When experimental animals inhale synthetic amorphous silica (SAS) dust, it dissolves in the lung fluid and is rapidly eliminated. If swallowed, the vast majority of SAS is excreted in the facees and there is little accumulation in the body. Following absorption across the gut, SAS is eliminated via urine without modification in animals and humans. SAS is not expected to be broken down (metabolised) in mammals. After ingestion, there is limited accumulation of SAS in body tissues and rapid elimination occurs. Intestinal absorption hars not been calculated, but appears to be insignificant in animals or humans. SASs injected subcutaneously are subjected to rapid dissolution and removal. There is no indication of metabolism of SAS in animals or humans based on chemical structure and available data. In contrast to crystalline silica, SAS is soluble in physiological media and the soluble chemical species that are formed are eliminated via the urinary tract without modification. Both the mammalian and environmental toxicology of SASs are significantly influenced by the physical and chemical properties, particularly those of solubility and particle size. SAS has no acute intrinsic toxicity by inhalation. Adverse effects, including suffocation, that have been reported were caused by the presence of high numbers of respirable particles generated to meet the required test atmosphere. These results are not representative of exposure to commercial SASs and should not be used for human risk assessment. Though repeated exposure of the skin may cause drynes and cracking, SAS is not stower set effects in the accees in lung inflammation, cell injury and lung collage nontent), all of which subsided after exposure. Lowes
	function values and chest radiographs are not adversely affected by long-term exposure to SAS. for acid mists, aerosols, vapours Data from assays for genotoxic activity in vitro suggest that eukaryotic cells are susceptible to genetic damage when the pH falls to about 6.5. Cells from the respiratory tract have not been examined in this respect. Mucous secretion may protect the cells of the airways from direct exposure to inhaled acidic mists, just as mucous plays an important role in protecting the gastric epithelium from its auto-secreted hydrochloric
	acid. In considering whether pH itself induces genotoxic events in vivo in the respiratory system, comparison should be made with the human stomach, in which gastric juice may be at pH 1-2 under fasting or nocturnal conditions, and with the human urinary bladder, in which the pH of

Continued...

	histological findings include aluminium-containing macrophages infiltrating muscle tissue at the injection site. The hypothesis is that the long-lasting granuloma triggers the development of the systemic syndrome. Aluminium acts not only as an adjuvant, stimulating the immune system either to fend off infections or to tolerate antigens, it also acts as a sensitisers causing contact allergy and allergic contact dermatitis. In general, metal allergies are very common and aluminium is considered to be a weak allergen. A metal must be ionised to be able to act as a contact allergen, then it has to undergo haptenisation to be immunogenic and to initiate an immune response. Once inside the skin, the metal ions must bind to proteins to become immunologically reactive. The most important routes of exposure and sensitisation to aluminium are through aluminium-containing vaccines. One Swedish study showed a statistically significant association between contract allergy to aluminium containing vaccines. One Swedish study showed a statistically significant association between contract allergy to aluminium-containing numeror of the system cases of occupational skin sensitistation reported in the literature are the prolonged use of aluminium-containing antiperspirants, topical medication, and tattooing of the skin with aluminium-containing pigments. Most of the patients experienced eczematous reactions whereas tattooing caused granulomas. Even though aluminium is used extensively in industry, only a low number of cases of occupational skin sensitiestation to aluminium factory of the system callergic contact dermatitis in the form of flare-up reactions after re-exposure to aluminium-containing toothpaste The material may trigger oculogyric crisis. The term "oculogyric" refers to the bilateral elevation of the visual gaze. Initial symptoms include restlessness, agitation, malaise, or a fixed stare. Then comes the more characteristically described extreme and sustained upward deviation of the eyes. In addition, the eyes may con
LITHIUM COBALTATE	Allergic reactions which develop in the respiratory passages as bronchial asthma or rhinoconjunctivitis, are mostly the result of reactions of the allergen with specific antibodies of the IgE class and belong in their reaction rates to the manifestation of the immediate type. In addition to the allergen-specific potential for causing respiratory sensitisation, the amount of the allergen, the exposure period and the genetically determined disposition of the exposed person are likely to be decisive. Factors which increase the sensitivity of the mucosa may play a role in predisposing a person to allergy. They may be genetically determined or acquired, for example, during infections or exposure to irritant substances. Immunologically the low molecular weight substances become complete allergens in the organism either by binding to peptides or proteins (haptens) or after metabolism (prohaptens). Particular attention is drawn to so-called atopic diathesis which is characterised by an increased susceptibility to allergic rhinitis, allergic bronchial asthma and atopic eczema (neurodermatitis) which is associated with increased IgE synthesis. Exogenous allergic alveolitis is induced essentially by allergen specific immune-complexes of the IgG type; cell-mediated reactions (T lymphocytes) may be involved. Such allergy is of the delayed type with onset up to four hours following exposure.
GRAPHITE, NATURAL	* Timcal MSDS
COPPER	 WARNING: Inhalation of high concentrations of copper fume may cause "metal fume fever", an acute industrial disease of short duration. Symptoms are tiredness, influenza like respiratory tract iritation with fever. for copper and its compounds (typically copper chirdre): Acute toxicity: There are no reliable acute oral toxicity results available. In an acute dermal toxicity study (OECD TG 402), one group of 5 male rats and 5 groups of 5 female rats received doese of 1000, 1500 and 2000 mg/kg bw via dermal application for 24 hours. The LD50 values of copper monochloride were 2,000 mg/kg bw or greater for male (no deaths observed) and 1,224 mg/kg bw for female. Four females died at both 1500 and 2000 mg/kg bw, and one at 1,000 mg/kg bw. Symptom of the hardness of skin, an exudation of hardness site, the formation of scar and reddish changes were observed on application sites in all treated animals. Skin inflammation and injury were also noted. In addition, a reddish or black urine was observed in females at 2,000, 1,500 and 1,000 mg/kg bw. Female rats appeared to be more sensitive than male based on mortality and clinical signs. No reliable skin/eye irritation studies were available. The acute dermal study with copper monochloride was given orally (gavage) to Sprague-Dawley rats for 30 days to males and for 39 - 51 days to females at concentrations of 0, 1, 3, 50, 20, and 80 mg/kg bw/day. The NOAEL value was 5 and 1.3 mg/kg bw/day for male and female rats, respectively. No deaths were observed in male rats. One treatment-related death was observed in thenale rats in the high dose group. Erythropoletic toxicity (anaemia) was seen in both sexes at the 80 mg/kg bw/day. The NOAEL value was 5 and 1.3 mg/kg bw/day formale and female rats, respectively. No deats to male rats. Cone treatment-related death was observed in female rats in the high dose group. Erythropoletic toxicity (anaemia) was seen in both sexes at the 80 mg/kg bw/day. The frequency of squam
NICKEL	Oral (rat) TDLo: 500 mg/kg/5D-I Inhalation (rat) TCLo: 0.1 mg/m3/24H/17W-C WARNING: This substance has been classified by the IARC as Group 2B: Possibly Carcinogenic to Humans. Tenth Annual Report on Carcinogens: Substance anticipated to be Carcinogen [<i>National Toxicology Program: U.S. Dep. of Health & Human Services 2002</i>]
402E Electronic Super Duster & LITHIUM COBALTATE	 Goitrogenic:. Goitrogens are substances that suppress the function of the thyroid gland by interfering with iodine uptake, which can, as a result, cause an enlargement of the thyroid, i.e., a goitre Goitrogens include: Vitexin, a flavanoid, which inhibits thyroid peroxidase thus contributing to goiter. Ions such as thiocyanate and perchlorate which decrease iodide uptake by competitive inhibition; as a consequence of reduced thyroxine and triiodothyronine secretion by the gland, at low doses, this causes an increased release of thyrotropin (by reduced negative feedback), which then stimulates the gland.

402E Electronic S	Super Duster
-------------------	--------------

	 Lithium which inhibits thyroid hormone release. Certain foods, such as soy and millet (containing vitexins) and vegetables in the genus Brassica (e.g. broccoli, brussels sprouts, cabbage, horseradish). Caffeine (in coffee, tea, cola, chocolate) which acts on thyroid function as a suppressant. 			
402E Electronic Super Duster & GRAPHITE, NATURAL & LITHIUM FLUOROPHOSPHATE	Asthma-like symptoms may continue for months or even years after exposure to the material ends. This may be due to a non-allergic condition known as reactive airways dysfunction syndrome (RADS) which can occur after exposure to high levels of highly irritating compound. Main criteria for diagnosing RADS include the absence of previous airways disease in a non-atopic individual, with sudden onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. Other criteria for diagnosis of RADS include a reversible airflow pattern on lung function tests, moderate to severe bronchial hyperreactivity on methacholine challenge testing, and the lack of minimal lymphocytic inflammation, without eosinophila. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. On the other hand, industrial bronchitis is a disorder that occurs as a result of exposure due to high concentrations of irritating substance (often particles) and is completely reversible after exposure ceases. The disorder is characterized by difficulty breathing, cough and mucus production.			
LITHIUM COBALTATE & COPPER & NICKEL	The following information refers to contact allergens as a group and may not be specific to this product. Contact allergies quickly manifest themselves as contact eczema, more rarely as urticaria or Quincke's oedema. The pathogenesis of contact eczema involves a cell-mediated (T lymphocytes) immune reaction of the delayed type. Other allergic skin reactions, e.g. contact urticaria, involve antibody-mediated immune reactions. The significance of the contact allergen is not simply determined by its sensitisation potential: the distribution of the substance and the opportunities for contact with it are equally important. A weakly sensitising substance which is widely distributed can be a more important allergen than one with stronger sensitising potential with which few individuals come into contact. From a clinical point of view, substances are noteworthy if they produce an allergic test reaction in more than 1% of the persons tested.			
LITHIUM COBALTATE & LITHIUM FLUOROPHOSPHATE & ALUMINIUM	No significant acute toxicological data identified in liter	ature search.		
Acute Toxicity	×	Carcinogenicity	×	
Skin Irritation/Corrosion	×	Reproductivity	×	
Serious Eye Damage/Irritation	×	STOT - Single Exposure	×	
Respiratory or Skin	×	STOT - Repeated Exposure	×	
sensitisation				

11.2 Information on other hazards

11.2.1. Endocrine disrupting properties

No evidence of endocrine disrupting properties were found in the current literature.

11.2.2. Other information

See Section 11.1

SECTION 12 Ecological information

12.1. Toxicity

402E Electronic Super Duster	Endpoint	Test Duration (hr)	Species	Value	Source
	Not Available	Not Available	Not Available	Not Available	Not Available
	Endpoint	Test Duration (hr)	Species	Value	Source
	EC10(ECx)	168h	Algae or other aquatic plants	0.00123mg	/1 2
	EC50	96h	Algae or other aquatic plants	23.8mg/l	2
lithium cobaltate	LC50	96h	Fish	0.8mg/l	2
	EC50	72h	Algae or other aquatic plants	0.0288mg/l	2
	EC50	48h	Crustacea	0.241mg/l	2
	Endpoint	Test Duration (hr)	Species	Value	Sourc
	NOEC(ECx)	48h	Crustacea	>=100mg	/1 2
graphite, natural	EC50	72h	Algae or other aquatic plants	>100mg/l	2
	LC50	96h	Fish	>100mg/l	2
	EC50	48h	Crustacea	>100mg/l	2
	Endpoint	Test Duration (hr)	Species	Value	Sourc
	NOEC(ECx)	528h	Fish	0.2mg	/1 2
	EC50	72h	Algae or other aquatic plants	62mg/	1 2
lithium fluorophosphate	EC50	96h	Algae or other aquatic plants	43mg/	1 2
	EC50	48h	Crustacea	98mg/	1 2
	LC50	96h	Fish	42mg/	1 2

	Endpoint	Test Duration (hr)	Species	Value	Sourc
	NOEC(ECx)	48h	Fish	0.00009mg/l	4
	EC50	96h	Algae or other aquatic plants	0.03-0.058mg/l	4
copper	EC50	72h	Algae or other aquatic plants	0.011-0.017mg/L	4
	LC50	96h	Fish	0.0028mg/l	2
	EC50	48h	Crustacea	0.0006-0.0017mg/l	4
	Endpoint	Test Duration (hr)	Species	Value	Sourc
aluminium	NOEC(ECx)	48h	Crustacea	>100mg/l	1
	EC50	96h	Algae or other aquatic plants	0.0054mg/l	2
	EC50	72h	Algae or other aquatic plants	0.0169mg/l	2
	LC50	96h	Fish	0.078-0.108mg/l	2
	EC50	48h	Crustacea	0.7364mg/l	2
	Endpoint	Test Duration (hr)	Species	Value	Sourc
	EC50(ECx)	72h	Algae or other aquatic plants	0.18mg/l	1
	EC50	96h	Algae or other aquatic plants	0.174-0.311mg/l	4
nickel	EC50	72h	Algae or other aquatic plants	0.18mg/l	1
	LC50	96h	Fish	0.06mg/l	4
	EC50	48h	Crustacea	>100mg/l	1

Extracted from 1. IUCLID Toxicity Data 2. Europe ECHA Registered Substances - Ecotoxicological Information - Aquatic Toxicity 4. US EPA, Ecotox database - Aquatic Toxicity Data 5. ECETOC Aquatic Hazard Assessment Data 6. NITE (Japan) - Bioconcentration Data 7. METI (Japan) - Bioconcentration Data 8. Vendor Data

On the basis of available evidence concerning either toxicity, persistence, potential to accumulate and or observed environmental fate and behaviour, the material may present a danger, immediate or long-term and /or delayed, to the structure and/ or functioning of natural ecosystems.

Toxic to aquatic organisms.

Do NOT allow product to come in contact with surface waters or to intertidal areas below the mean high water mark. Do not contaminate water when cleaning equipment or disposing of equipment wash-waters.

Wastes resulting from use of the product must be disposed of on site or at approved waste sites.

For Metal:

Atmospheric Fate - Metal-containing inorganic substances generally have negligible vapour pressure and are not expected to partition to air.

Environmental Fate: Environmental processes, such as oxidation, the presence of acids or bases and microbiological processes, may transform insoluble metals to more soluble ionic forms. Environmental processes may enhance bioavailability and may also be important in changing solubilities.

Aquatic/Terrestrial Fate: When released to dry soil, most metals will exhibit limited mobility and remain in the upper layer; some will leach locally into ground water and/ or surface water ecosystems when soaked by rain or melt ice. A metal ion is considered infinitely persistent because it cannot degrade further. Once released to surface waters and moist soils their fate depends on solubility and dissociation in water. A significant proportion of dissolved/ sorbed metals will end up in sediments through the settling of suspended particles. The remaining metal ions can then be taken up by aquatic organisms. Ionic species may bind to dissolved ligands or sorb to solid particles in water. Ecotoxicity: Even though many metals show few toxic effects at physiological pH levels, transformation may introduce new or magnified effects.

Ecotoxicity:

The tolerance of water organisms towards pH margin and variation is diverse. Recommended pH values for test species listed in OECD guidelines are between 6.0 and almost 9. Acute testing with fish showed 96h-LC50 at about pH 3.5

For copper:

Atmospheric Fate - Copper is unlikely to accumulate in the atmosphere due to a short residence time for airborne copper aerosols. Airborne coppers, however, may be transported over large distances. Air Quality Standards: no data available.

Aquatic Fate: Toxicity of copper is affected by pH and hardness of water. Total copper is rarely useful as a predictor of toxicity. In natural sea water, more than 98% of copper is organically bound and in river waters a high percentage is often organically bound, but the actual percentage depends on the river water and its pH.

Ecotoxicity: Copper accumulates significantly in the food chain. The toxic effect of copper in the aquatic biota depends on the bio-availability of copper in water which, in turn, depends on its physico-chemical form (i.e. speciation). Bioavailability is decreased by complexation and adsorption of copper by natural organic matter, iron and manganese hydrated oxides, and chelating agents excreted by algae and other aquatic organisms. Copper exhibits significant toxicity in some aquatic organisms. Some algal species are very sensitive to copper. Silicate, iron, manganese and EDTA may reduce bioavailability.

For copper: Ecotoxicity - Significant effects are expected on various species of microalgae, some species of macroalgae, and a range of invertebrates, including crustaceans, gastropods and sea urchins. Copper is moderately toxic to crab and their larvae and is highly toxic to gastropods (mollusks, including oysters, mussels and clams). In fish, the acute lethal concentrations of copper depends both on test species and exposure conditions. Waters with high concentrations of copper can have significant effects on diatoms and sensitive invertebrates, notably cladocerans (water fleas). Most taxonomic groups of macroalgae and invertebrates will be severely affected.

For Copper: Typical foliar levels of copper are: Uncontaminated soils (0.3-250 mg/kg); Contaminated soils (150-450 mg/kg); Mining/smelting soils (6.1-25 mg/kg80 mg/kg300 mg/kg). Terrestrial Fate: Plants - Generally, vegetation reflects soil copper levels in its foliage. This is dependent upon the bioavailability of copper and the physiological requirements of species concerned. Crops are often more sensitive to copper than the native flora. Soil: In soil, copper levels are raised by application of fertilizer, fungicides, from deposition of highway dusts and from urban, mining and industrial sources. Chronic and or acute effects on sensitive species occur as a result of human activities such as copper fertilizer addition and addition of sludge. When soil levels exceed 150 mg Cu/kg, native and agricultural species show chronic effects. Soils in the range 500-1000 mg Cu/kg are in a strongly selective fashion allowing the survival of only copper-tolerant species and strains. At 2000 Cu mg/kg, most species contor survive. By 3500 mg Cu/kg, areas are largely devoid of vegetation cover. The organic content of the soil appears to be a key factor affecting the bioavailability of copper. On normal forest soils, non-rooted plants such as mosses and lichens show higher copper concentrations. The fruiting bodies and mycorrhizal sheaths of soil fungi associated with higher plants in forests often accumulate copper to much higher levels than plants at the same site.

Although small amounts of fluorides are conceded to have beneficial effects, two forms of chronic toxic effect, dental fluorosis and skeletal fluorosis may be caused by excessive intake over long periods. Fluorides are absorbed by humans following inhalation of workplace and ambient air that has been contaminated, ingestion of drinking water and foods and dermal contact.

Fluoride accumulates, food-dependently in skeletal tissues of both aquatic and terrestrial vertebrates and invertebrates. Bioaccumulation occurs in marine organisms and, to a lesser extend, fresh water organisms. Reported BCF-values for marine organisms range up to approximately 150 and 60 for fish and crustacea, respectively. The most important exposure route for plants is uptake from the atmosphere. Concentrations in plants in the vicinity of a HF production plant range up to approximately 200 mg/kg, with mean levels between 20 and 50 mg/kg dry weight. Generally, lowest fluoride levels are found in herbivores and (somewhat) higher levels in predators.

Fluorides have been shown to accumulate in animals that consume fluoride-containing foliage However, accumulation is primarily in skeletal tissue and therefore, it is unlikely that fluoride will biomagnify up the food chain.

Both hydrogen fluoride and particulate fluorides will be transported in the atmosphere and deposited on land or water by wet and dry deposition. Non-volatile inorganic fluoride particulates are removed from the atmosphere via condensation or nucleation processes. Fluorides adsorbed on particulate matter in the atmosphere are generally stable and are not readily hydrolysed, although they may be degraded by radiation if they persist in the atmosphere. Fluorine and the silicon fluorides (fluosilicates, silicofluorides) are hydrolysed in the atmosphere to form hydrogen fluoride. Hydrogen fluoride may combine with water vapour to produce an aerosol or fog of aqueous hydrofluoric acid. Based upon available data, inorganic fluoride compounds, with the exception of sulfur hexafluoride, are not expected to remain in the troposphere for long periods or to migrate to the stratosphere. Estimates of

the residence time of sulfur hexafluoride in the atmosphere range from 500 to several thousand years. Fluoride in aerosols can be transported over large distances by wind or as a result of atmospheric turbulence. The distance travelled is determined by the deposition velocity of both the gaseous hydrogen fluoride and the fluorides in particulate form. Atmospheric fluorides may be transported to soils and surface waters through both wet and dry deposition processes.

Fluorides undergo transformations in soil and water, forming complexes and binding strongly to soil and sediment.

In water, the transport and transformation of inorganic fluorides are influenced by pH, water hardness and the presence of ion-exchange materials such as clays. In natural water, fluoride forms strong complexes with aluminum in water, and fluorine chemistry in water is largely regulated by aluminum concentration and pH. Below pH 5, fluoride is almost entirely complexed with aluminum and consequently, the concentration of free F- is low. As the pH increases, AI-OH complexes dominate over AI-F complexes and the free F- levels increase. Fluoride forms stable complexes with calcium and magnesium, which are present in sea water. Calcium carbonate precipitation dominates the removal of dissolved fluoride from sea water. The residence time for fluoride in ocean sediment is calculated to be 2-3 million years. Fluorosilicic acid and hydrofluoric acid in high aquatic concentrations such as may be found in industrial waste ponds may volatilise, releasing silicon tetrafluoride and hydrogen fluoride into the atmosphere.

Solubilisation of inorganic fluorides from minerals may also be enhanced by the presence of ion-exchange materials (e.g., bentonite clays and humic acid). Once dissolved, inorganic fluorides remain in solution under conditions of low pH and hardness and in the presence of ion-exchange material. Soluble inorganic fluorides may also form aerosols at the air?water interface or vaporise into the atmosphere whereas undissolved species generally undergo sedimentation.

Factors that influence the mobility of inorganic fluorides in soil are pH and the formation of aluminium and calcium complexes In more acidic soils, concentrations of inorganic fluoride were considerably higher in the deeper horizons. The low affinity of fluorides for organic material results in leaching from the more acidic surface horizon and increased retention by clay minerals and silts in the more alkaline, deeper horizons. The maximum adsorption of fluoride to soil was reported to occur at pH 5.5. In acidic soils with pH below 6, most of the fluoride is in complexes with either aluminium or iron. Fluoride in alkaline soils at pH 6.5 and above is almost completely fixed in soils as calcium fluoride, if sufficient calcium carbonate is available. Fluoride is extremely immobile in soil, as determined by lysimeter experiments.

Populations living in areas with high fluoride levels in groundwater may be exposed to higher levels of fluorides in their drinking water or in beverages prepared with the water. Among these populations, outdoor laborers, people living in hot climates, and people with polydipsia will generally have the greatest daily intake of fluorides because they consume greater amounts of water.

Foods characteristically high in fluoride content are certain types of fish and seafood (1.9-28.5 mg/kg), especially those types in which the bones are consumed, bone products such as bone meal and gelatin, and tea, which contains approximately 0.52 mg fluoride/cup

Fluoride is mainly absorbed by the body in the form of hydrogen fluoride, which has a pKa of 3.45. That is, when ionic fluoride enters the acidic environment of the stomach lumen, it is largely converted into hydrogen fluoride. Most of the fluoride that is not absorbed from the stomach will be rapidly absorbed from the small intestine.

For lithium (anion): Environmental fate:

Experiments with experimental animals have shown that lithium can have reprotoxic effects, and increasing consumption might therefore result in adverse effects on health and environment. Lithium has significant bioavailability only when administered as a partially soluble salt such as lithium carbonate. Lithium is not a dietary mineral for plants but it does stimulate plant growth.

Ecotoxicity:

Fish LC50 (28, 35 days) rainbow trout 9.28, 1.4 mg/l (salt)

Fish LC50 (96 h): fathead minnow 42 mg/l; NOEC 13 mg/l (salt)

Daphnia magna EC50 (48 h): 24 mg/l; NOEC 11 mg/l

Lithium is not expected to bioaccumulate in mammals and its human and environmental toxicity are low. Lithium does accumulate in several species of fish, molluscs and crustaceans where it stored in the digestive tract and exoskeleton

Methanogenesis of granular anaerobic sludge (initial COD 5750 mg/l O2, pH 7.2) was stimulated at lithium ion concentration 10-20 mg/l, slightly inhibited at lithium ion concentration 350 mg/l and seriously inhibited at lithium ion concentration > 500 mg/l.

Microinjection of lithium chloride into prospective ventral blastomeres of a 32-cell Xenopus larvis embryo gives rise to duplication of dorsoanterior structures such as the notochord, neural tube and eyes.

For aluminium and its compounds and salts:

Despite its prevalence in the environment, no known form of life uses aluminium salts metabolically. In keeping with its pervasiveness, aluminium is well tolerated by plants and animals. Owing to their prevalence, potential beneficial (or otherwise) biological roles of aluminium compounds are of continuing interest.

Environmental fate:

Aluminium occurs in the environment in the form of silicates, oxides and hydroxides, combined with other elements such as sodium, fluorine and arsenic complexes with organic matter.

Acidification of soils releases aluminium as a transportable solution. Mobilisation of aluminium by acid rain results in aluminium becoming available for plant uptake.

As an element, aluminum cannot be degraded in the environment, but may undergo various precipitation or ligand exchange reactions. Aluminum in compounds has only one oxidation state (+3), and would not undergo oxidation-reduction reactions under environmental conditions. Aluminum can be complexed by various ligands present in the environment (e.g., fulvic and humic acids). The solubility of aluminum in the environment will depend on the ligands present and the pH.

The trivalent aluminum ion is surrounded by six water molecules in solution. The hydrated aluminum ion, [Al(H2O)6]3+, undergoes hydrolysis, in which a stepwise deprotonation of the coordinated water ligands forms bound hydroxide ligands (e.g., [Al(H2O)5(OH)]2+, [Al(H2O)4(OH)2]+). The speciation of aluminum in water is pH dependent. The hydrated trivalent aluminum ion is the predominant form at pH levels below 4. Between pH 5 and 6, the predominant hydrolysis products are Al(OH)2+ and Al(OH)2+, while the solid Al(OH)3 is most prevalent between pH 5.2 and 8.8. The soluble species Al(OH)4- is the predominant species above pH 9, and is the only species present above pH 10. Polymeric aluminum

hydroxides appear between pH 4.7 and 10.5, and increase in size until they are transformed into colloidal particles of amorphous AI(OH)3, which crystallise to gibbsite in acid waters. Polymerisation is affected by the presence of dissolved silica; when enough silica is present, aluminum is precipitated as poorly crystallised clay mineral species.

Hydroxyaluminum compounds are considered amphoteric (e.g., they can act as both acids and bases in solution). Because of this property, aluminum hydroxides can act as buffers and resist pH changes within the narrow pH range of 4-5.

Monomeric aluminum compounds, typified by aluminum fluoride, chloride, and sulfate, are considered reactive or labile compounds, whereas polymeric aluminum species react much more slowly in the environment. Aluminum has a stronger attraction for fluoride in an acidic environment compared to other inorganic ligand.

The adsorption of aluminum onto clay surfaces can be a significant factor in controlling aluminum mobility in the environment, and these adsorption reactions, measured in one study at pH 3.0-4.1, have been observed to be very rapid. However, clays may act either as a sink or a source for soluble aluminum depending on the degree of aluminum saturation on the clay surface.

Within the pH range of 5-6, aluminum complexes with phosphate and is removed from solution. Because phosphate is a necessary nutrient in ecological systems, this immobilization of both aluminum and phosphate may result in depleted nutrient states in surface water.

Plant species and cultivars of the same species differ considerably in their ability to take up and translocate aluminum to above-ground parts. Tea leaves may contain very high concentrations of aluminum, >5,000 mg/kg in old leaves. Other plants that may contain high levels of aluminum include Lycopodium (Lycopodiaceae), a few ferns, Symplocos (Symplocaceae), and Orites (Proteaceae). Aluminum is often taken up and concentrated in root tissue. In sub-alpine ecosystems, the large root biomass of the Douglas fir, *Abies amabilis*, takes up aluminum and immobilizes it, preventing large accumulation in above-ground tissue. It is unclear to what extent aluminum is taken up into root food crops and leafy vegetables. An uptake factor (concentration of aluminum in the plant/concentration of aluminum in soil) of 0.004 for leafy vegetables and 0.00065 for fruits and tubers has been reported, but the pH and plant species from which these uptake factors were derived are unclear. Based upon these values, however, it is clear that aluminum is not taken up in plants form soil, but is instead biodiluted.

Aluminum concentrations in rainbow trout from an alum-treated lake, an untreated lake, and a hatchery were highest in gill tissue and lowest in muscle. Aluminum residue analyses in brook trout have shown that whole-body aluminum content decreases as the fish advance from larvae to juveniles. These results imply that the aging larvae begin to decrease their rate of aluminum uptake, to eliminate aluminum at a rate that exceeds uptake, or to maintain approximately the same amount of aluminum while the body mass increases. The decline in whole-body aluminum residues in juvenile brook trout may be related to growth and dilution by edible muscle tissue that accumulated less aluminum than did the other tissues. The greatest fraction of the gill-associated aluminum was not sorbed to the gill tissue, but to the gill mucus. It is thought that mucus appears to retard aluminum transport from solution to the membrane surface, thus delaying the acute biological response of the fish. It has been reported that concentrations of aluminum in whole-body tissue of the Atlantic salmon exposed to 190 and were directly related to the aluminum exposure concentration. In acidic waters (pH 4.6-5.3) with low concentrations of calcium (0.5-1.5 mg Ca/L), labile aluminum between 25 and 75 ug/L is toxic. Because aluminum is toxic to many aquatic species, it is not bioaccumulated to a significant degree (BCF <300) in most fish and shellfish; therefore, consumption of contaminated fish does not appear to be a significant source of aluminum exposure in humans.

Bioconcentration of aluminum has also been reported for several aquatic invertebrate species. BCF values ranging from 0.13 to 0.5 in the whole-body were reported for the snail. Bioconcentration of aluminum has also been reported for aquatic insects.

Ecotoxicity:

Freshwater species pH >6.5

Fish: Acute LC50 (48-96 h) 5 spp: 0.6 (Salmo salar) - 106 mg/L; Chronic NOEC (8-28 d): 7 spp,NOEC, 0.034-7.1 mg/L. The lowest measured chronic figure was an 8-d LC50 of 0.17 mg/L for *Micropterus* sp.

Amphibian: Acute LC50 (4 d): Bufo americanus, 0.86-1.66 mg/L; Chronic LC50 (8-d) 2.28 mg/L

Crustaceans LC50 (48 h): 1 sp 2.3-36 9 mg/L; Chronic NOEC (7-28 d) 3 spp, 0.136-1.72 mg/L

Algae EC50 (96 h): population growth, 0.46-0.57 mg/L; 2 spp, chronic NOEC, 0.8-2.0 mg/L *Freshwater species pH <6.5 (all between pH 4.5 and 6.0)*

Fish LC50 (24-96 h): 4 spp, 0.015 (S. trutta) - 4.2 mg/L; chronic data on Salmo trutta, LC50 (21-42 d) 0.015- 0.105 mg/L

Amphibians LC50 (4-5 d): 2 spp, 0.540-2.670 m/L (absolute range 0.40-5.2 mg/L)

Alga: 1 sp NOEC growth 2.0 mg/L

Among freshwater aquatic plants, single-celled plants are generally the most sensitive to aluminium. Fish are generally more sensitive to aluminium than aquatic invertebrates. Aluminium is a gill toxicant to fish, causing both ionoregulatory and respiratory effects.

The bioavailability and toxicity of aluminium is generally greatest in acid solutions. Aluminium in acid habitats has been observed to be toxic to fish and phytoplankton. Aluminium is generally more toxic over the pH range 4.4.5.4, with a maximum toxicity occurring around pH 5.0.5.2. The inorganic single unit aluminium species (Al(OH)2 +) is thought to be the most toxic. Under very acid conditions, the toxic effects of the high H+ concentration appear to be more important than the effects of low concentrations of aluminium; at approximately neutral pH values, the toxicity of aluminium increased from pH 7 to pH 9. However, the opposite relationship was found in other studies. The uptake and toxicity of aluminium increased from pH 7 to pH 9. However, the opposite relationship was found in other studies. The uptake and toxicity of aluminium increased from pH 7 to pH 9. However, the opposite relationship was found in other studies. Complexing agents such as fluoride, citrate and humic substances reduce the availability of aluminium to organisms, resulting in lower toxicity. Silicon can also reduce aluminium toxicity to fish.

Drinking Water Standards: aluminium: 200 ug/l (UK max.) 200 ug/l (WHO guideline) chloride: 400 mg/l (UK max.) 250 mg/l (WHO guideline) fluoride: 1.5 mg/l (UK max.) 1.5 mg/l (WHO guideline) nitrate: 50 mg/l (UK max.) 50 mg/l (WHO guideline) sulfate: 250 mg/l (UK max.) Soil Guideline: none available. Air Quality Standards: none available. for cobalt compounds:

Environmental Fate:

Cobalt strongly binds to humic substances naturally present in aquatic environments. Humic acids can be modified by UV light and bacterial decomposition, which may change their binding characteristics over time. The lability of the complexes is strongly influenced by pH, the nature of the humic material, and the metal-to-humic substance ratio. The lability of cobalt-humate complexes decreases in time ("aging effect"). The "aging effect" indicates that after a period of time (~12 hours), complexes that were initially formed are transformed into stronger ones from which the metal ion is less readily dislodged.

Between 45 and 100% of dissolved cobalt was found to occur in very strong complexes. The distribution coefficient of cobalt may vary considerably in the same sediment in response to conditions affecting the pH, redox conditions, ionic strength, and amount of dissolved organic matter. Uptake of 60Co from the water by sediment increased rapidly as the pH was increased from 5 to 7-7.5 and then slightly decrease. Therefore, pH would be an important factor affecting the migration of cobalt in surface water. Uptake was little affected by changes in liquid-to-solids ratio and ionic strength. 60Co is more mobile in anaerobic marine aquatic environments than in freshwater aerobic conditions, 30% of the 60Co added to a sediment-freshwater system was "exchangeable" and therefore potentially mobile, while under aerobic conditions, 98% of the 60Co was permanently fixed. Most of the mobile 60Co produced under anaerobic conditions in seawater consisted of nonionic cobalt associated with low molecular weight organic substances that were stable to changes in pH; the exchangeable 60Co appeared to be mostly ionic.

The mobility of cobalt in soil is inversely related to how strongly it is adsorbed by soil constituents. Cobalt may be retained by mineral oxides such as iron and manganese oxide, crystalline materials such as aluminosilicate and goethite, and natural organic substances in soil. Sorption of cobalt to soil occurs rapidly (within 1-2 hours). Soil-derived oxide materials were found to adsorb greater amounts of cobalt than other materials examined, although substantial amounts were also adsorbed by organic materials. Clay minerals sorbed relatively smaller amounts of cobalt. In addition, little cobalt was desorbed from soil oxides while substantial amounts desorbed from humic acids and montorillonite. In clay soil, adsorption may be due to ion exchange at the cationic sites on clay with either simple ionic cobalt or hydrolysed ionic species such as COH+. Adsorption of cobalt onto iron and manganese increases with pH. In addition, as pH increases, insoluble hydroxides or carbonates may form, which would also reduce cobalt mobility. Conversely, sorption onto mobile colloids would enhance its mobility. In most soils, cobalt is more mobile than lead, chromium (II), zinc, and nickel, but less mobile than cadmium. In several studies, the Kd of cobalt in a variety of soils ranged from 0.2 to 3,800. The soil properties showing the highest correlation with Kd were exchangeable calcium, pH, water content, and cation exchange capacity. Organic complexing agents such as ethylenediamineteraacetic acid (EDTA), which are used for decontamination operations at nuclear facilities, greatly enhance the mobility of cobalt in soil. Other organic complexing agents, such as those obtained from plant decay, may also increase cobalt mobility in soil. However, both types of complexes decrease cobalt uptake by plants. Addition of sewage sludge to soil also increases the mobility of cobalt, perhaps due to organic complexation of cobalt.

Cobalt may be taken up from soil by plants. Surface deposition of cobalt on leaves of plants from airborne particles may also occur. Elevated levels of cobalt have been found in the roots of sugar beets and potato tubers in soils with high cobalt concentrations (e.g., fly ash-amended soil) due to absorption of cobalt from soil. However, the translocation of cobalt from roots to above-ground parts of plants is not significant in most soils, as indicated by the lack of cobalt in seeds of barley, oats, and wheat grown in high-cobalt soil. However, in highly acidic soil (pH as low as 3.3), significantly higher than normal concentrations of cobalt were found in rye grass foliage, oats, and barley. For example, cobalt concentrations in rye grass grown in unlimed soil (pH>5.0). Soil and plant samples taken in the 30-km zone around Chernobyl indicated that 60Co was not accumulated by plants and mushrooms. Studies investigating the uptake of 60Co by tomato plants watered with 60Co contaminated water showed that tomato plants absorbed <2% of the activity available from the soil.

60Co is taken up by phytoplankton and unicellular algae (Senenastrum capricornutum) with concentration factors (dry weight) ranging from 15,000 to 40,000 and 2,300 to 18,000, respectively. Elimination experiments with the algae indicate a two component biological half-life, 1 hour and 11 days, respectively, and suggest that the cobalt might be absorbed not only on the surface, but also intracellularly. Since these organisms are at the bottom of the food chain, they could play an important role in the trophic transfer of 60Co released into waterways by nuclear facilities. However, cobalt levels generally diminish with increasing trophic levels in a food chain. The low levels of cobalt in fish may also reflect cobalt's strong binding to particles and sediment. The bioaccumulation factors (dry weight basis) for cobalt in marine and freshwater fish are ~100-4,000 and <10-1,000, respectively; accumulation in the muscle of marine fish is 5- 500.

Cobalt largely accumulates in the viscera and on the skin, as opposed to the edible parts of the fish. In carp, accumulation from water accounted for 75% of 60Co accumulated from both water and food; accumulation from water and food was additive. Depuration half-lives were 53 and 87 days for fish contaminated from food and water, respectively. In the case of an accidental release of 60Co into waterways, the implication is that effects would manifest themselves rapidly since the primary route of exposure is from water rather than food. Uptake of 60Co was very low in whitefish, with concentrations being highest in kidney and undetectable in muscle. Similarly, while accumulation of 60Co by carp from food was dependent on food type, the transfer factor was very low, approximately 0.01, and no long-term bioaccumulation of the radionuclide occurred.

Concentration factors have also been reported for various other aquatic organisms. Freshwater mollusks have concentration factors of 100-14,000 (~1-300 in soft tissue). Much of the cobalt taken up by mollusks and crustacea from water or sediment is adsorbed to the shell or exoskeleton; very little cobalt is generally accumulated in the edible parts. A concentration factor for 60Co of 265 mL/g (wet weight) was determined for Daphnia magna in laboratory studies. The rapid decrease in radioactivity during the depuration phase indicated that adsorption to the surface was the major contamination process. However, the digestive glands of crustaceans, which are sometimes eaten by humans, may accumulate high levels of 60Co. The shell accounted for more than half of the body burden. Among the soft tissue, the gills and viscera had the highest concentrations factors and the muscle had the lowest.

In mussels, higher absorption efficiencies and lower efflux rates were obtained for cobalamins than for inorganic cobalt, suggesting that it is a more bioavailable form of cobalt. Vitamin B12, which contains cobalt, is synthesized by S8 species of seven genueses of bacteria as well as blue-green algae and actinomycetes (mold-like bacteria). Consequently, vitamin B12 levels in marine water range from very low levels in some open ocean water to much higher levels in some coastal waters. Freshwater environments have comparable levels of vitamin B12. The high level of cobalamins in coastal water appears to be elated to the occurrence of macrophytes in these areas with their high concentrations of vitamin B12. Cobalamins are released into the water when the organisms die.

Some female birds sequester metals into their eggs under certain conditions, a phenomenon that may jeopardize the developing embryos.

DO NOT discharge into sewer or waterways

12.2. Persistence and degradability

Ingredient	Persistence: Water/Soil	Persistence: Air
	No Data available for all ingredients	No Data available for all ingredients

12.3. Bioaccumulative potential

Ingredient	Bioaccumulation
	No Data available for all ingredients
12.4 Mahiliku in aail	
12.4. Mobility in soil	

Ingredient	Mobility
	No Data available for all ingredients

12.5. Results of PBT and vPvB assessment

	Р	В	т	
Relevant available data	Not Available	Not Available	Not Av	vailable
PBT	×	×	×	
vPvB	×	×	×	
PBT Criteria fulfilled?				No
vPvB				No

12.6. Endocrine disrupting properties

No evidence of endocrine disrupting properties were found in the current literature.

12.7. Other adverse effects

No evidence of ozone depleting properties were found in the current literature.

SECTION 13 Disposal considerations

13.1. Waste treatment methods

Product / Packaging disposal	 Containers may still present a chemical hazard/ danger when empty. Return to supplier for reuse/ recycling if possible. Otherwise: If container can not be cleaned sufficiently well to ensure that residuals do not remain or if the container cannot be used to store the same product, then puncture containers, to prevent re-use, and bury at an authorised landfill. Where possible retain label warnings and SDS and observe all notices pertaining to the product. DO NOT allow wash water from cleaning or process equipment to enter drains. It may be necessary to collect all wash water for treatment before disposal. In all cases disposal to sever may be subject to local laws and regulations and these should be considered first. Where in doubt contact the responsible authority.
Waste treatment options	Not Available
Sewage disposal options	Not Available

SECTION 14 Transport information

Labels Required

	See special provision 188
	Battery Capacity: 2000 mAh
	Battery Voltage: 11.1 V
	Watt-hour Rating: 22.2 Wh
	Battery weight: 137 g Unit gross weight: 362 g
The lithium-ion battery air	Meets test requirements of subsection 38.3 of Part III of the Manual of Tests and Criteria. Affords protection against damage and short
duster.	&ã& ăĐấng & ẳậ*Á,¦[ơ.&cặ) Á et æng • cÁ&[} cæ&cÁ, ão@A&[} å &cã;∧Á, æe∿¦ãæ;•Á, ão@A kæ; ∧Á, æ&∖æt ậ *Á hat could lead to a short circuit.

Land transport (ADR-RID)

14.1. UN number number	or ID	3481			
14.2. UN proper s name	shipping	LITHIUM ION BATTERIES CONTAINED IN EQUIPMENT or LITHIUM ION BATTERIES PACKED WITH EQUIPMENT (including lithium ion polymer batteries)			
14.3. Transport h class(es)	azard	Class 9 Subsidiary risk No	ot Applicable	_	
14.4. Packing gro	oup	Not Applicable			
14.5. Environmen	ntal hazard	Not Applicable			
	14.6. Special precautions for	Hazard identification ((Kemler)	Not Applicable	_
		Classification code		M4	
		Hazard Label		9A	
user	Special provisions		188 230 310 348 360 376 377 387 390 670		
		Limited quantity		0	-
					-

Continued...

Version No: 2.6

402E Electronic Super Duster

2 (E)

Tunnel Restriction Code

Air transport (ICAO-IATA / DGR)

14.1. UN number	3481				
4.2. UN proper shipping name	Lithium ion batteries packed with equipment (including lithium ion polymer batteries)				
14.3. Transport hazard class(es)	ICAO/IATA Class	9			
	ICAO / IATA Subrisk	Not Applicable			
	ERG Code	12FZ			
4.4. Packing group	Not Applicable				
14.5. Environmental hazard	Not Applicable				
	Special provisions		A88 A99 A154 A164 A181 A185 A213 A802		
	Cargo Only Packing Instructions		966		
	Cargo Only Maximum Qty / Pack		35 kg		
14.6. Special precautions for user	Passenger and Cargo Packing Instructions		966		
usu	Passenger and Cargo Maximum Qty / Pack		5 kg		
	Passenger and Cargo Limited Quantity Packing Instructions		Forbidden		
	Passenger and Cargo Limited Maximum Qty / Pack		Forbidden		

Sea transport (IMDG-Code / GGVSee)

14.1. UN number	3481			
14.2. UN proper shipping name	LITHIUM ION BATTERIES CONTAINED IN EQUIPMENT or LITHIUM ION BATTERIES PACKED WITH EQUIPMENT (including lithium ion polymer batteries)			
14.3. Transport hazard class(es)	IMDG Class 9 IMDG Subrisk Not Applicable			
14.4. Packing group	Not Applicable			
14.5. Environmental hazard	Not Applicable			
14.6. Special precautions for user	EMS Number F-A, S-I Special provisions 188 230 310 348 360 376 377 384 387 390 Limited Quantities 0			

Inland waterways transport (ADN)

14.1. UN number	3481				
14.2. UN proper shipping name	LITHIUM ION BATTERI polymer batteries)	LITHIUM ION BATTERIES CONTAINED IN EQUIPMENT or LITHIUM ION BATTERIES PACKED WITH EQUIPMENT (including lithium ion polymer batteries)			
14.3. Transport hazard class(es)	9 Not Applicable	9 Not Applicable			
14.4. Packing group	Not Applicable				
14.5. Environmental hazard	Not Applicable				
	Classification code	M4			
14.6 Special processitions for	Special provisions	188; 230; 310; 348; 360; 376; 377; 387; 670			
14.6. Special precautions for user	Limited quantity	0			
	Equipment required	PP			
	Fire cones number	0			

14.7. Maritime transport in bulk according to IMO instruments

14.7.1. Transport in bulk according to Annex II of MARPOL and the IBC code Not Applicable

14.7.2. Transport in bulk in accordance with MARPOL Annex V and the IMSBC Code

Product name	Group
lithium cobaltate	Not Available
graphite, natural	Not Available
lithium fluorophosphate	Not Available
copper	Not Available
aluminium	Not Available
nickel	Not Available

14.7.3. Transport in bulk in accordance with the IGC Code

Ship Type
Not Available

SECTION 15 Regulatory information

15.1. Safety, health and environmental regulations / legislation specific for the substance or mixture lithium cobaltate is found on the following regulatory lists UK Workplace Exposure Limits (WELs). Chemical Footprint Project - Chemicals of High Concern List International WHO List of Proposed Occupational Exposure Limit (OEL) Values for Manufactured Nanomaterials (MNMS) graphite, natural is found on the following regulatory lists International WHO List of Proposed Occupational Exposure Limit (OEL) Values for Manufactured Nanomaterials (MNMS) lithium fluorophosphate is found on the following regulatory lists International WHO List of Proposed Occupational Exposure Limit (OEL) Values for Manufactured Nanomaterials (MNMS) copper is found on the following regulatory lists Great Britain GB Biocidal Active Substances International WHO List of Proposed Occupational Exposure Limit (OEL) Values for Manufactured Nanomaterials (MNMS) Great Britain GB mandatory classification and labelling list (GB MCL) UK Workplace Exposure Limits (WELs). aluminium is found on the following regulatory lists UK Workplace Exposure Limits (WELs). Great Britain GB mandatory classification and labelling list (GB MCL) International WHO List of Proposed Occupational Exposure Limit (OEL) Values for Manufactured Nanomaterials (MNMS) nickel is found on the following regulatory lists Chemical Footprint Project - Chemicals of High Concern List International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs - Group 2B: Possibly carcinogenic to humans Great Britain GB mandatory classification and labelling list (GB MCL) International WHO List of Proposed Occupational Exposure Limit (OEL) Values for International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Manufactured Nanomaterials (MNMS) Monographs

This safety data sheet is in compliance with the following EU legislation and its adaptations - as far as applicable - : Directives 98/24/EC, - 92/85/EEC, - 94/33/EC, - 2008/98/EC, - 2010/75/EU; Commission Regulation (EU) 2020/878; Regulation (EC) No 1272/2008 as updated through ATPs.

UK Workplace Exposure Limits (WELs).

Information according to 2012/18/EU (Seveso III):

Seveso Category Not Available

15.2. Chemical safety assessment

No Chemical Safety Assessment has been carried out for this substance/mixture by the supplier.

National Inventory Status

National Inventory	Status		
Australia - AIIC / Australia Non-Industrial Use	Yes		
Canada - DSL	No (lithium fluorophosphate)		
Canada - NDSL	No (lithium cobaltate; graphite, natural; copper; aluminium; nickel)		
China - IECSC	/es		
Europe - EINEC / ELINCS / NLP	ies in the second se		
Japan - ENCS	No (graphite, natural; lithium fluorophosphate; copper; aluminium; nickel)		
Korea - KECI	Yes		
New Zealand - NZIoC	No (lithium fluorophosphate)		
Philippines - PICCS	No (lithium cobaltate)		
USA - TSCA	Yes		
Taiwan - TCSI	Yes		
Mexico - INSQ	No (lithium cobaltate; lithium fluorophosphate)		
Vietnam - NCI	Yes		
Russia - FBEPH	No (lithium cobaltate; lithium fluorophosphate)		
Legend:	Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory. These ingredients may be exempt or will require registration.		

OFOTION 40 Oth

SECTION 16 Other information			
Revision Date	09/06/2023		
Initial Date	19/03/2023		
Full text Risk and Hazard code	S		
H250	Catches fire spontaneously if exposed to air.		
H261	In contact with water releases flammable gases.		
H302	Harmful if swallowed.		
H311	Toxic in contact with skin.		
H314	Causes severe skin burns and eye damage.		
H317	May cause an allergic skin reaction.		
H318	Causes serious eye damage.		
H334	May cause allergy or asthma symptoms or breathing difficulties if inhaled.		
H350	May cause cancer.		
H351	Suspected of causing cancer.		
H372	Causes damage to organs through prolonged or repeated exposure.		
H373	May cause damage to organs through prolonged or repeated exposure.		
H411	Toxic to aquatic life with long lasting effects.		
H413	May cause long lasting harmful effects to aquatic life.		

Other information

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered. For detailed advice on Personal Protective Equipment, refer to the following EU CEN Standards:

EN 166 Personal eye-protection

EN 340 Protective clothing

EN 374 Protective gloves against chemicals and micro-organisms

EN 13832 Footwear protecting against chemicals

EN 133 Respiratory protective devices

Definitions and abbreviations

PC - TWA: Permissible Concentration-Time Weighted Average PC - STEL: Permissible Concentration-Short Term Exposure Limit IARC: International Agency for Research on Cancer ACGIH: American Conference of Governmental Industrial Hygienists

STEL: Short Term Exposure Limit

TEEL: Temporary Emergency Exposure Limit. IDLH: Immediately Dangerous to Life or Health Concentrations

ES: Exposure Standard

OSF: Odour Safety Factor

NOAEL :No Observed Adverse Effect Level

LOAEL: Lowest Observed Adverse Effect Level

TLV: Threshold Limit Value

LOD: Limit Of Detection

OTV: Odour Threshold Value

- **BCF: BioConcentration Factors**
- **BEI: Biological Exposure Index**

AIIC: Australian Inventory of Industrial Chemicals DSL: Domestic Substances List

NDSL: Non-Domestic Substances List

IECSC: Inventory of Existing Chemical Substance in China EINECS: European INventory of Existing Commercial chemical Substances

ELINCS: European List of Notified Chemical Substances

NLP: No-Longer Polymers

ENCS: Existing and New Chemical Substances Inventory

KECI: Korea Existing Chemicals Inventory

NZIoC: New Zealand Inventory of Chemicals

PICCS: Philippine Inventory of Chemicals and Chemical Substances

TSCA: Toxic Substances Control Act

TCSI: Taiwan Chemical Substance Inventory INSQ: Inventario Nacional de Sustancias Químicas

NCI: National Chemical Inventory

FBEPH: Russian Register of Potentially Hazardous Chemical and Biological Substances

Classification and procedure used to derive the classification for mixtures according to Regulation (EC) 1272/2008 [CLP]

Classification according to regulation (EC) No 1272/2008 [CLP] and amendments	Classification Procedure
, EUH210	Calculation method